
11 Fibonacci Heaps

The Fibonacci heap is a data structure implementing the
priority queue abstract data type, just like the ordinary
heap but more complicated and asymptotically faster for
some operations. We first introduce binomial trees, which
are special heap-ordered trees, and then explain Fibonacci
heaps as collections of heap-ordered trees.

Binomial trees. The binomial tree of heighth is a tree
obtained from two binomial trees of heighth− 1, by link-
ing the root of one to the other. The binomial tree of height
0 consists of a single node. Binomial trees of heights up
to 4 are shown in Figure 44. Each step in the construc-

Figure 44: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is
obtained by linking two copies of the previous tree.

tion increases the height by one, increases thedegree (the
number of children) of the root by one, and doubles the
size of the tree. It follows that a binomial tree of heighth

has root degreeh and size2h. The root has the largest de-
gree of any node in the binomial tree, which implies that
every node in a binomial tree withn nodes has degree at
mostlog

2
n.

To store any set of items with priorities, we use a small
collection of binomial trees. For an integern, let ni be
the i-th bit in the binary notation, so we can writen =∑

i≥0
ni2

i. To storen items, we use a binomial tree of
size2i for eachni = 1. The total number of binomial trees
is thus the number of 1’s in the binary notation ofn, which
is at mostlog

2
(n + 1). The collection is referred to as a

binomial heap. The items in each binomial tree are stored
in heap-order. There is no specific relationship between
the items stored in different binomial trees. The item with
minimum key is thus stored in one of the logarithmically
many roots, but it is not prescribed ahead of time in which
one. An example is shown in Figure 45 where1110 =
10112 items are stored in three binomial trees with sizes
8, 2, and 1. In order to add a new item to the set, we create
a new binomial tree of size 1 and we successively link
binomial trees as dictated by the rules of adding 1 to the

=+
10

4

111312

15 7

15

9 89

15

10

1113

15

12

4 7

9

5

8

5

9

Figure 45: Adding the shaded node to a binomial heap consisting
of three binomial trees.

binary notation ofn. In the example, we get10112+12 =
11002. The new collection thus consists of two binomial
trees with sizes 8 and 4. The size 8 tree is the old one, and
the size 4 tree is obtained by first linking the two size 1
trees and then linking the resulting size 2 tree to the old
size 2 tree. All this is illustrated in Figure 45.

Fibonacci heaps. A Fibonacci heap is a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more flexibility. It
will be important to understand how exactly the nodes of a
Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
pointer to its parent and a pointer to one of its children, as
shown in Figure 46. Besides the pointers, each node stores

min

12 13

5

15

7

109

4

8

11

9

Figure 46: The Fibonacci heap representation of the first collec-
tion of heap-ordered trees in Figure 45.

a key, its degree, and a bit that can be used to mark or un-
mark the node. The roots of the heap-ordered trees are
doubly-linked in a cycle, and there is an explicit pointer to
the root that stores the item with the minimum key. Figure
47 illustrates a few basic operations we perform on a Fi-
bonacci heap. Given two heap-ordered trees, welink them
by making the root with the bigger key the child of the
other root. Tounlink a heap-ordered tree or subtree, we
remove its root from the doubly-linked cycle. Finally, to
merge two cycles, we cut both open and connect them at

38



merging

linking

unlinking

Figure 47: Cartoons for linking two trees, unlinking a tree,and
merging two cycles.

their ends. Any one of these three operations takes only
constant time.

Potential function. A Fibonacci heap supports a vari-
ety of operations, including the standard ones for priority
queues. We use a potential function to analyze their amor-
tized cost applied to an initially empty Fibonacci heap.
Letting ri be the number of roots in the root cycle and
mi the number of marked nodes, thepotential after the
i-th operation isΦi = ri +2mi. When we deal with a col-
lection of Fibonacci heaps, we define its potential as the
sum of individual potentials. The initial Fibonacci heap is
empty, soΦ0 = 0. As usual, we letci be the actual cost
andai = ci + Φi − Φi−1 the amortized cost of thei-th
operation. SinceΦ0 = 0 andΦi ≥ 0 for all i, the actual
cost is less than the amortized cost:

n∑

i=1

ci ≤

n∑

i=1

ai = rn + 2mn +

n∑

i=1

ci.

For some of the operations, it is fairly easy to compute the
amortized cost. We get theminimum by returning the key
in the marked root. This operation does not change the po-
tential and its amortized and actual cost isai = ci = 1.
We meld two Fibonacci heaps,H1 andH2, by first merg-
ing the two root circles and second adjusting the pointer to
the minimum key. We have

ri(H) = ri−1(H1) + ri−1(H2),

mi(H) = mi−1(H1) + mi−1(H2),

which implies that there is no change in potential. The
amortized and actual cost is thereforeai = ci = 1. We
insert a key into a Fibonacci heap by first creating a new
Fibonacci heap that stores only the new key and second
melding the two heaps. We have one more node in the
root cycle so the change in potential isΦi − Φi−1 = 1.
The amortized cost is thereforeai = ci + 1 = 2.

Deletemin. Next we consider the somewhat more in-
volved operation of deleting the minimum key, which is
done in four steps:

Step 1. Remove the node with minimum key from the
root cycle.

Step 2. Merge the root cycle with the cycle of children
of the removed node.

Step 3. As long as there are two roots with the same
degree link them.

Step 4. Recompute the pointer to the minimum key.

For Step 3, we use a pointer arrayR. Initially, R[i] =
NULL for eachi. For each root̺ in the root cycle, we
execute the following iteration.

i = ̺ → degree;
while R[i] 6= NULL do

̺′ = R[i]; R[i] = NULL ; ̺ = L INK(̺, ̺′); i++
endwhile;
R[i] = ̺.

To analyze the amortized cost for deleting the minimum,
let D(n) be the maximum possible degree of any node
in a Fibonacci heap ofn nodes. The number of linking
operations in Step 3 is the number of roots we start with,
which is less thanri−1 +D(n), minus the number of roots
we end up with, which isri. After Step 3, all roots have
different degrees, which impliesri ≤ D(n)+1. It follows
that the actual cost for the four steps is

ci ≤ 1 + 1 + (ri−1 + D(n) − ri) + (D(n) + 1)

= 3 + 2D(n) + ri−1 − ri.

The potential change isΦi−Φi−1 = ri−ri−1. The amor-
tized cost is thereforeai = ci + Φi −Φi−1 ≤ 2D(n) + 3.
We will prove next time that the maximum possible de-
gree is at most logarithmic in the size of the Fibonacci
heap,D(n) < 2 log

2
(n + 1). This implies that deleting

the minimum has logarithmic amortized cost.

Decreasekey and delete. Besides deletemin, we also
have operations that delete an arbitrary item and that de-
crease the key of an item. Both change the structure of
the heap-ordered trees and are the reason why a Fibonacci
heap is not a collection of binomial trees but of more gen-
eral heap-ordered trees. Thedecreasekey operation re-
places the item with keyx stored in the nodeν by x − ∆,
where∆ ≥ 0. We will see that this can be done more effi-
ciently than to deletex and to insertx − ∆. We decrease
the key in four steps.

39



Step 1. Unlink the tree rooted atν.

Step 2. Decrease the key inν by ∆.

Step 3. Add ν to the root cycle and possibly update
the pointer to the minimum key.

Step 4. Do cascading cuts.

We will explain cascading cuts shortly, after explaining
the four steps we take to delete a nodeν. Before we delete
a nodeν, we check whetherν = min, and if it is then we
delete the minimum as explained above. Assume therefore
thatν 6= min.

Step 1. Unlink the tree rooted atν.

Step 2. Merge the root-cycle with the cycle ofν’s chil-
dren.

Step 3. Dispose ofν.

Step 4. Do cascading cuts.

Figure 48 illustrates the effect of decreasing a key and of
deleting a node. Both operations create trees that are not

decreasekey 12 to 2

delete 4

57

9

7

28

9

10

11

5

15

13

13

89 15

2

10

11

9

7 54

810

11

4

9

1312

9

15

Figure 48: A Fibonacci heap initially consisting of three bino-
mial trees modified by a decreasekey and a delete operation.

binomial, and we use cascading cuts to make sure that the
shapes of these trees are not very different from the shapes
of binomial trees.

Cascading cuts. Let ν be a node that becomes the child
of another node at timet. We markν when it loses its first
child after timet. Then we unmarkν, unlink it, and add it
to the root-cycle when it loses its second child thereafter.
We call this operation acut, and it may cascade because
one cut can cause another, and so on. Figure 49 illus-
trates the effect of cascading in a heap-ordered tree with
two marked nodes. The first step decreases key 10 to 7,
and the second step cuts first node 5 and then node 4.

5

4

5

7

4

7 5

4

10

Figure 49: The effect of cascading after decreasing 10 to 7.
Marked nodes are shaded.

Summary analysis. As mentioned earlier, we will prove
D(n) < 2 log

2
(n+1) next time. Assuming this bound, we

are able to compute the amortized cost of all operations.
The actual cost of Step 4 in decreasekey or in delete is the
number of cuts,ci. The potential changes because there
areci new roots andci fewer marked nodes. Also, the last
cut may introduce a new mark. Thus

Φi − Φi−1 = ri − ri−1 + 2mi − 2mi−1

≤ ci − 2ci + 2

= −ci + 2.

The amortized cost is thereforeai = ci + Φi − Φi−1 ≤

ci − (2 − ci) = 2. The first three steps of a decreasekey
operation take only a constant amount of actual time and
increase the potential by at most a constant amount. It
follows that the amortized cost of decreasekey, including
the cascading cuts in Step 4, is only a constant. Similarly,
the actual cost of a delete operation is at most a constant,
but Step 2 may increase the potential of the Fibonacci heap
by as much asD(n). The rest is bounded from above by
a constant, which implies that the amortized cost of the
delete operation is O(log n). We summarize the amortized
cost of the various operations supported by the Fibonacci
heap:

find the minimum O(1)
meld two heaps O(1)
insert a new item O(1)
delete the minimum O(log n)
decrease the key of a node O(1)
delete a node O(log n)

We will later see graph problems for which the difference
in the amortized cost of the decreasekey and delete op-
erations implies a significant improvement in the running
time.

40


