heap but more complicated and asymptotically faster for
some operations. We first introduce binomial trees, which

are special heap-ordered trees, and then explain Fibonacckigure 45: Adding the shaded node to a binomial heap congisti
heaps as collections of heap-ordered trees. of three binomial trees.

11 Fibonacci Heaps @ ® @ o

The Fibonacci heap is a data structure implementing the ORRORO + @ = ORCRORRCO

priority queue abstract data type, just like the ordinary (12 (19 (1) (12 (19 (1) ©
19

Binomial trees. Thebinomial tree of height/ is a tree pinary notation of. In the example, we ga011,+ 1, =

obtained from two binomial trees of height- 1, by link- - 1100,. The new collection thus consists of two binomial

ing the root of one to the other. The binomial tree of height {rees with sizes 8 and 4. The size 8 tree is the old one, and

0 consists of a single node. Binomial trees of heights up e size 4 tree is obtained by first linking the two size 1

to 4 are shown in Figure 44. Each step in the construc- yees and then linking the resulting size 2 tree to the old
size 2 tree. All this is illustrated in Figure 45.

"
Fibonacci heaps. A Fibonacci heap is a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more flexibility. It
will be important to understand how exactly the nodes of a

Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
Figure 44: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is pointer to its parent and a pointer to one of its children, as

obtained by linking two copies of the previous tree. shown in Figure 46. Besides the pointers, each node stores
tion increases the height by one, increasegitgeee (the .

number of children) of the root by one, and doubles the ”‘:L

size of the tree. It follows that a binomial tree of height § 72 4 @j

has root degreg and size2”. The root has the largest de- ‘

gree of any node in the binomial tree, which implies that oSN WR

every node in a binomial tree with nodes has degree at

mostlog, n.

To store any set of items with priorities, we use a small
collection of binomial trees. For an integer let n; be
the i-th bit in the binary notation, so we can write =
>0 ni2'. To storen items, we use a binomial tree of

size2’ for eachn; = 1. The total number of binomial trees Figure 46: The Fibonacci heap representation of the firsecol

is thus the number of 1's in the binary notationgfwhich tion of heap-ordered trees in Figure 45.

is at mostlog,(n + 1). The collection is referred to as a

binomial heap. The items in each binomial tree are stored a key, its degree, and a bit that can be used to mark or un-
in heap-order. There is no specific relationship between mark the node. The roots of the heap-ordered trees are
the items stored in different binomial trees. The item with doubly-linked in a cycle, and there is an explicit pointer to
minimum key is thus stored in one of the logarithmically the root that stores the item with the minimum key. Figure
many roots, but it is not prescribed ahead of time in which 47 illustrates a few basic operations we perform on a Fi-
one. An example is shown in Figure 45 whdrg, = bonacci heap. Given two heap-ordered treeslimkethem
10115 items are stored in three binomial trees with sizes by making the root with the bigger key the child of the
8, 2, and 1. In order to add a new item to the set, we createother root. Tounlink a heap-ordered tree or subtree, we
a new binomial tree of size 1 and we successively link remove its root from the doubly-linked cycle. Finally, to
binomial trees as dictated by the rules of adding 1 to the merge two cycles, we cut both open and connect them at

38

cO—0" O NO—0n
AYRAYAVAYA

unlinking

O—O0— -0y
YRV

merging

linking

Figure 47: Cartoons for linking two trees, unlinking a treed
merging two cycles.

their ends. Any one of these three operations takes only
constant time.

Potential function. A Fibonacci heap supports a vari-
ety of operations, including the standard ones for priority
gueues. We use a potential function to analyze their amor-
tized cost applied to an initially empty Fibonacci heap.
Letting r; be the number of roots in the root cycle and
m; the number of marked nodes, tpetential after the
i-th operation isb; = r; +2m,;. When we deal with a col-
lection of Fibonacci heaps, we define its potential as the
sum of individual potentials. The initial Fibonacci heap is
empty, so®, = 0. As usual, we let; be the actual cost
anda; = ¢; + ®; — ®,_; the amortized cost of theth
operation. Sinc&, = 0 and®; > 0 for all 7, the actual
cost is less than the amortized cost:

n
D a
i=1

For some of the operations, it is fairly easy to compute the
amortized cost. We get theinimum by returning the key

n

Zci <

i=1

= rn+2mn+iq.
i=1

in the marked root. This operation does not change the po-

tential and its amortized and actual costijs= ¢; = 1.

We meld two Fibonacci heapd{; and Hs, by first merg-

ing the two root circles and second adjusting the pointer to
the minimum key. We have

’f‘i(H)

ri—1(Hy) +ric1(H2),
mi—1(H1) + mi—1(Ha),

which implies that there is no change in potential. The
amortized and actual cost is therefare= ¢; = 1. We
insert a key into a Fibonacci heap by first creating a new

Deletemin. Next we consider the somewhat more in-
volved operation of deleting the minimum key, which is
done in four steps:

Step 1. Remove the node with minimum key from the
root cycle.

Step 2. Merge the root cycle with the cycle of children
of the removed node.

Step 3. Aslong as there are two roots with the same
degree link them.

Step 4. Recompute the pointer to the minimum key.

For Step 3, we use a pointer arrdy Initially, R[]
NuLL for eachi. For each roop in the root cycle, we
execute the following iteration.

i = o — degree;
whi | e R[i] # NULL do
o' = R[i]; R[i] = NULL; o = LINK(p, ¢); i++
endwhi | e;
R[] = o.

To analyze the amortized cost for deleting the minimum,
let D(n) be the maximum possible degree of any node
in a Fibonacci heap of. nodes. The number of linking
operations in Step 3 is the number of roots we start with,
which is less tham;_, + D(n), minus the number of roots
we end up with, which ig;. After Step 3, all roots have
different degrees, which implies < D(n)+1. It follows
that the actual cost for the four steps is

1414 (ric1+D(n) —r;) + (D(n) +1)
34+2D(n) +ri—1 — 1.

¢ <

The potential change i8; —®; 1 = r; —r;_1. The amor-
tized cost is therefore; = ¢; + ®; — ;-1 < 2D(n) + 3.

We will prove next time that the maximum possible de-
gree is at most logarithmic in the size of the Fibonacci
heap,D(n) < 2logy(n + 1). This implies that deleting
the minimum has logarithmic amortized cost.

Decreasekey and delete. Besides deletemin, we also
have operations that delete an arbitrary item and that de-
crease the key of an item. Both change the structure of
the heap-ordered trees and are the reason why a Fibonacci
heap is not a collection of binomial trees but of more gen-
eral heap-ordered trees. Tllecreasekey operation re-

Fibonacci heap that stores only the new key and secondplaces the item with key stored in the node by x — A,

melding the two heaps. We have one more node in the
root cycle so the change in potentialds — ®; | = 1.
The amortized cost is therefosge = ¢; + 1 = 2.

39

whereA > 0. We will see that this can be done more effi-
ciently than to delete and to insertz — A. We decrease
the key in four steps.

Step 1. Unlink the tree rooted at.
Step 2. Decrease the key inby A.

Step 3. Add v to the root cycle and possibly update
the pointer to the minimum key.

Step 4. Do cascading cuts.

We will explain cascading cuts shortly, after explaining Figure 49: The effect of cascading after decreasing 10 to 7.
the four steps we take to delete a ned@efore we delete ~ Marked nodes are shaded.

a nodev, we check whether = min, and if it is then we

delete the minimum as explained above. Assume thereforeSummary analysis. As mentioned earlier, we will prove

thaty # min. D(n) < 2log,(n+1) nexttime. Assuming this bound, we

are able to compute the amortized cost of all operations.
Step 1. Unlink the tree rooted at. The actual cost of Step 4 in decreasekey or in delete is the
number of cutsg;. The potential changes because there
arec; new roots and; fewer marked nodes. Also, the last
cut may introduce a new mark. Thus

St ep 2. Merge the root-cycle with the cycle ofs chil-
dren.

Step 3. Dispose ofv.

. Qi —P®i1 = ri—rio1+2my; —2my
Step 4. Do cascading cuts.
< ¢ —2¢+2
= —C; + 2

Figure 48 illustrates the effect of decreasing a key and of
deleting a node. Both operations create trees that are NOtrhe amortized cost is therefote = ¢; + &; — &;_, <

¢i — (2 — ¢;) = 2. The first three steps of a decreasekey

(@) G) (@) g © operation take only a constant amount of actual time and

increase the potential by at most a constant amount. It

(ff @ & © follows that the amortized cost of decreasekey, including
219 W

(12 (13 (1) decreasekey 12to the cascading cuts in Step 4, is only a constant. Similarly,

® y delete 4 the actual cost of a delete operation is at most a constant,
(9 (0 ©) ©) but Step 2 may increase the potential of the Fibonacci heap
g by as much a®(n). The rest is bounded from above by

a constant, which implies that the amortized cost of the
delete operation is Qfg n). We summarize the amortized

Figure 48: A Fibonacci heap initially consisting of threedi cost of the various operations supported by the Fibonacci

mial trees modified by a decreasekey and a delete operation.

heap:
binomial, and we use cascading cuts to make sure that the find the minimum 0(1)
shapes of these trees are not very different from the shapes meld two heaps 0(1)
of binomial trees. insert a new item 0(1)
delete the minimum Qg n)
decrease the key of a node 0o(1)
Cascading cuts. Letr be a node that becomes the child delete a node Qfg n)

of another node at time We markv when it loses its first

child after timet. Then we unmark;, unlink it, and add it~ We Wwill later see graph problems for which the difference
to the root-cycle when it loses its second child thereafter. in the amortized cost of the decreasekey and delete op-
We call this operation aut, and it may cascade because €rations implies a significant improvement in the running
one cut can cause another, and so on. Figure 49 illus-time.

trates the effect of cascading in a heap-ordered tree with

two marked nodes. The first step decreases key 10 to 7,

and the second step cuts first node 5 and then node 4.

40

