
13 Graph Search

We can think of graphs as generalizations of trees: they
consist of nodes and edges connecting nodes. The main
difference is that graphs do not in general represent hier-
archical organizations.

Types of graphs. Different applications require differ-
ent types of graphs. The most basic type is thesimple
undirected graph that consists of a setV of vertices and a
setE of edges. Each edge is an unordered pair (a set) of
two vertices. We always assumeV is finite, and we write

3

4

1

20

Figure 50: A simple undirected graph with vertices0, 1, 2, 3, 4

and edges{0, 1}, {1, 2}, {2, 3}, {3, 0}, {3, 4}.

(

V
2

)

for the collection of all unordered pairs. HenceE is a
subset of

(

V

2

)

. Note that becauseE is a set, each edge can
occur only once. Similarly, because each edge is a set (of
two vertices), it cannot connect to the same vertex twice.
Verticesu andv areadjacent if {u, v} ∈ E. In this caseu
andv are calledneighbors. Other types of graphs are

directed: E ⊆ V × V .
weighted: has a weighting functionw : E → R.
labeled: has a labeling functionℓ : V → Z.
non-simple: there are loops and multi-edges.

A loop is like an edge, except that it connects to the same
vertex twice. Amulti-edge consists of two or more edges
connecting the same two vertices.

Representation. The two most popular data structures
for graphs are direct representations of adjacency. Let
V = {0, 1, . . . , n − 1} be the set of vertices. Thead-
jacency matrix is then-by-n matrixA = (aij) with

aij =

{

1 if {i, j} ∈ E,

0 if {i, j} 6∈ E.

For undirected graphs, we haveaij = aji, soA is sym-
metric. For weighted graphs, we encode more informa-
tion than just the existence of an edge and defineaij as

the weight of the edge connectingi andj. The adjacency
matrix of the graph in Figure 50 is

A =













0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0













,

which is symmetric. Irrespective of the number of edges,

0 1 2 3

V

4

0

2

4

3

3

1

3

0

2

1

Figure 51: The adjacency list representation of the graph inFig-
ure 50. Each edge is represented twice, once for each endpoint.

the adjacency matrix hasn2 elements and thus requires a
quadratic amount of space. Often, the number of edges
is quite small, maybe not much larger than the number of
vertices. In these cases, the adjacency matrix wastes mem-
ory, and a better choice is a sparse matrix representation
referred to asadjacency lists, which is illustrated in Fig-
ure 51. It consists of a linear arrayV for the vertices and
a list of neighbors for each vertex. For most algorithms,
we assume that vertices and edges are stored in structures
containing a small number of fields:

struct Vertex {int d, f, π; Edge ∗adj};
struct Edge {int v; Edge ∗next}.

Thed, f, π fields will be used to store auxiliary informa-
tion used or created by the algorithms.

Depth-first search. Since graphs are generally not or-
dered, there are many sequences in which the vertices can
be visited. In fact, it is not entirely straightforward to make
sure that each vertex is visited once and only once. A use-
ful method is depth-first search. It uses a global variable,
time, which is incremented and used to leave time-stamps
behind to avoid repeated visits.

46



void V ISIT(int i)
1 time++; V [i].d = time;

forall outgoing edgesij do
2 if V [j].d = 0 then
3 V [j].π = i; V ISIT(j)

endif
endfor;

4 time++; V [i].f = time.

The test in line 2 checks whether the neighborj of i has
already been visited. The assignment in line 3 records that
the vertex is visitedfrom vertexi. A vertex is first stamped
in line 1 with the time at which it is encountered. A vertex
is second stamped in line 4 with the time at which its visit
has been completed. To prepare the search, we initialize
the global time variable to 0, label all vertices as not yet
visited, and call VISIT for all yet unvisited vertices.

time = 0;
forall verticesi do V [i].d = 0 endfor;
forall verticesi do
if V [i].d = 0 then V [i].π = 0; V ISIT(i) endif

endfor.

Letn be the number of vertices andm the number of edges
in the graph. Depth-first search visits every vertex once
and examines every edge twice, once for each endpoint.
The running time is therefore O(n + m), which is propor-
tional to the size of the graph and therefore optimal.

DFS forest. Figure 52 illustrates depth-first search by
showing the time-stampsd andf and the pointersπ in-
dicating the predecessors in the traversal. We call an edge
{i, j} ∈ E a tree edge if i = V [j].π or j = V [i].π and a
back edge, otherwise. The tree edges form theDFS forest

12,13

11,14

10,15

1,16

4, 5 7, 8

2, 93, 6

Figure 52: The traversal starts at the vertex with time-stamp 1.
Each node is stamped twice, once when it is first encountered
and another time when its visit is complete.

of the graph. The forest is a tree if the graph is connected
and a collection of two or more trees if it is not connected.
Figure 53 shows the DFS forest of the graph in Figure 52
which, in this case, consists of a single tree. The time-

7, 8

4, 5 12,13

11,14

10,152, 9

1,16

3, 6

Figure 53: Tree edges are solid and back edges are dotted.

stampsd are consistent with the preorder traversal of the
DFS forest. The time-stampsf are consistent with the
postorder traversal. The two stamps can be used to decide,
in constant time, whether two nodes in the forest live in
different subtrees or one is a descendent of the other.

NESTING LEMMA . Vertex j is a proper descendent of
vertexi in the DFS forest iffV [i].d < V [j].d as well
asV [j].f < V [i].f .

Similarly, if you have a tree and the preorder and postorder
numbers of the nodes, you can determine the relation be-
tween any two nodes in constant time.

Directed graphs and relations. As mentioned earlier,
we have adirected graph if all edges are directed. A
directed graph is a way to think and talk about a mathe-
matical relation. A typical problem where relations arise
is scheduling. Some tasks are in a definite order while
others are unrelated. An example is the scheduling of
undergraduate computer science courses, as illustrated in
Figure 54. Abstractly, arelation is a pair(V, E), where

Comput. Org.

and Programm.

Operating Distributed

110

214

212

Inform. Syst.

and Implementation

Program Design

and Analysis I

Program Design

and Analysis II

Software Design Comput. Networks

and Distr. Syst.

Systems

108

006 100

104

Figure 54: A subgraph of the CPS course offering. The courses
CPS104 and CPS108 are incomparable, CPS104 is a predecessor
of CPS110, and so on.

V = {0, 1, . . . , n − 1} is a finite set of elements and
E ⊆ V × V is a finite set of ordered pairs. Instead of

47



(i, j) ∈ E we write i ≺ j and instead of(V, E) we write
(V,≺). If i ≺ j theni is apredecessor of j andj is asuc-
cessor of i. The terms relation, directed graph, digraph,
and network are all synonymous.

Directed acyclic graphs. A cycle in a relation is a se-
quencei0 ≺ i1 ≺ . . . ≺ ik ≺ i0. Even i0 ≺ i0
is a cycle. A linear extension of (V,≺) is an ordering
j0, j1, . . . , jn−1 of the elements that is consistent with the
relation. Formally this means thatjk ≺ jℓ impliesk < ℓ.
A directed graph without cycle is adirected acyclic graph.

EXTENSION LEMMA . (V,≺) has a linear extension iff it
contains no cycle.

PROOF. “=⇒” is obvious. We prove “⇐=” by induction.
A vertexs ∈ V is called asource if it has no predecessor.
Assuming(V,≺) has no cycle, we can prove thatV has
a source by following edges against their direction. If we
return to a vertex that has already been visited, we have
a cycle and thus a contradiction. Otherwise we get stuck
at a vertexs, which can only happen becauses has no
predecessor, which meanss is a source.

LetU = V −{s} and note that(U,≺) is a relation that is
smaller than(V,≺). Hence(U,≺) has a linear extension
by induction hypothesis. Call this extensionX and note
thats, X is a linear extension of(V,≺).

Topological sorting with queue. The problem of con-
structing a linear extension is calledtopological sorting.
A natural and fast algorithm follows the idea of the proof:
find a sources, print s, removes, and repeat. To expedite
the first step of finding a source, each vertex maintains
its number of predecessors and a queue stores all sources.
First, we initialize this information.

forall verticesj do V [j].d = 0 endfor;
forall verticesi do
forall successorsj of i do V [j].d++ endfor

endfor;
forall verticesj do
if V [j].d = 0 then ENQUEUE(j) endif

endfor.

Next, we compute the linear extension by repeated dele-
tion of a source.

while queue is non-emptydo
s = DEQUEUE;
forall successorsj of s do

V [j].d--;
if V [j].d = 0 then ENQUEUE(j) endif

endfor
endwhile.

The running time is linear in the number of vertices and
edges, namely O(n+m). What happens if there is a cycle
in the digraph? We illustrate the above algorithm for the
directed acyclic graph in Figure 55. The sequence of ver-

3, 2, 1, 0

1, 0

3, 2, 1, 0 1, 0

01, 00

1, 0

a d

e

c

h

f

b

g

Figure 55: The numbers next to each vertex count the predeces-
sors, which decreases during the algorithm.

tices added to the queue is also the linear extension com-
puted by the algorithm. If the process starts at vertexa

and if the successors of a vertex are ordered by name then
we geta, f, d, g, c, h, b, e, which we can check is indeed a
linear extension of the relation.

Topological sorting with DFS. Another algorithm that
can be used for topological sorting is depth-first search.
We output a vertex when its visit has been completed, that
is, when all its successors and their successors and so on
have already been printed. The linear extension is there-
fore generated from back to front. Figure 56 shows the

4, 5 6, 7 11, 12

1, 142, 915, 16

3, 8

10, 13

e

g

a

c

b h

fd

Figure 56: The numbers next to each vertex are the two time
stamps applied by the depth-first search algorithm. The first
number gives the time the vertex is encountered, and the second
when the visit has been completed.

same digraph as Figure 55 and labels vertices with time

48



stamps. Consider the sequence of vertices in the order of
decreasing second time stamp:

a(16), f(14), g(13), h(12), d(9), c(8), e(7), b(5).

Although this sequence is different from the one computed
by the earlier algorithm, it is also a linear extension of the
relation.

49


