17 Geometric Graphs

Inthe abstract notion of a graph, an edge is merely a pair of
vertices. The geometric (or topological) notion of a graph
is closer to our intuition in which we think of an edge as a
curve that connects two vertices.

Embeddings. Let G = (V, E) be a simple, undirected
graph and writeR? for the two-dimensional real plane.
A drawing maps every vertex € V to a pointe(v) in
R?, and it maps every edgg:, v} € E to a curve with
endpoints:(u) ande(v). The drawing is arembedding if

1. different vertices map to different points;
. the curves have no self-intersections;

the only points of a curve that are images of vertices
are its endpoints;

4. two curves intersect at most in their endpoints.

We can always map the vertices to points and the edges

to curves inR? so they form an embedding. On the other
hand, not every graph has an embedding#n The graph

G is planar if it has an embedding ifR?. As illustrated

in Figure 73, a planar graph has many drawings, not all of
which are embeddings. #&raight-line drawing or embed-

Figure 73: Three drawings df4, the complete graph with four
vertices. From left to right: a drawing that is not an embaddi
an embedding with one curved edge, a straight-line embgddin

ding is one in which each edge is mapped to a straight line
segment. It is uniquely determined by the mapping of the
verticesc : V — R2. We will see later that every planar
graph has a straight-line embedding.

Euler's formula. A face of an embedding of G is a
component of the thus defined decompositioRéf We
write n = |V, m = |E|, and{ for the number of faces.
Euler's formula says these numbers satisfy a linear rela-
tion.

EULER'S FORMULA. If G is connected and is an em-
bedding ofG in R? thenn — m + £ = 2.
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PROOF Choose a spanning tré®, T') of G = (V, E). It
hasn vertices,|T| = n — 1 edges, and one (unbounded)
face. We have, — (n — 1) + 1 = 2, which proves the for-
mula if G is a tree. Otherwise, draw the remaining edges,
one at a time. Each edge decomposes one face into two.
The number of vertices does not changejncreases by
one, and/ increases by one. Since the graph satisfies the
linear relation before drawing the edge, it satisfies the re-
lation also after drawing the edge.

A planar graph ismaximally connected if adding any
one new edge violates planarity. Not surprisingly, a planar
graph of three or more vertices is maximally connected
iff every face in an embedding is bounded by three edges.
Indeed, suppose there is a face bounded by four or more
edges. Then we can find two vertices in its boundary that
are not yet connected and we can connect them by draw-
ing a curve that passes through the face; see Figure 74.
For obvious reasons, we call an embedding of a maxi-

Figure 74: Drawing the edge fromto ¢ decomposes the quad-
rangle into two triangles. Note that we cannot draw the edge
from b to d since it already exists outside the quadrangle.

mally connected planar graph with > 3 vertices atri-
angulation. For such graphs, we have an additional linear
relation, namely3/ = 2m. We can thus rewrite Euler’s
formulaand get — m + 2 = 2andn — % + ¢ = 2 and
therefore

3n — 6;
2n — 4,

m
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Every planar graph can be completed to a maximally con-
nected planar graph. Far> 3 this implies that the planar
graph has at mosin — 6 edges and at mo8i — 4 faces.

Forbidden subgraphs. We can use Euler’s relation to
prove that the complete graph of five vertices is not planar.
It hasn = 5 vertices andn = 10 edges, contradicting the
upper bound of at mostn — 6 = 9 edges. Indeed, every
drawing of K5 has at least two edges crossing; see Figure
75. Similarly, we can prove that the complete bipartite
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Figure 75: A drawing ofK’s on the left and of’s 3 on the right. Figure 76: A convex region on the left and a non-convex star-
convex region on the right.

graph with three plus three vertices is not planar. It has
n = 6 vertices andn = 9 edges. Every cycle in a bipartite  such points: is thekernel of R. Clearly, every convex re-

graph has an even number of edges. Hedéeg< 2m. gion is star-convex but not every star-convex region is con-
Plugging this into Euler’s formula, we get-m + % > 2 vex. Similarly, there are regions that are not star-convex,
and thereforen < 2n — 4 = 8, again a contradiction. even rather simple ones such as the hexagon in Figure 77.

In a sense,Ks and K 5 are the quintessential non- However, every pentagon is star-convex. Indeed, the pen-

planar graphs. To make this concrete, we still need an

operation that creates or removes deg?eertices. Two

graphs ardnomeomor phic if one can be obtained from the

other by a sequence of operations, each deleting a d€gree-

vertex and replacing its two edges by the one that connects

its two neighbors, or the other way round. 2

KURATOWSKI'S THEOREM. A graphG is planar iff no Figure 77: A non-star-convex hexagon on the left and a star-

subgraph of7 is homeomorphic td(s or to K ;. convex pentagon on the right. The dark region inside the pen-
tagon is its kernel.

The proof of this result is a bit lengthy and omitted.
tagon can be decomposed into three triangles by drawing

two diagonals that share an endpoint. Extending the inci-
Pentagons are star-convex. Euler's formula can also be  dent sides into the pentagon gives locally the boundary of
used to show that every planar graph has a straight-line the kernel. It follows that the kernel is non-empty and has
embedding. Note that the sum of vertex degrees countsinterior points.
each edge twice, that i3, ., deg(v) = 2m. For planar
graphs, twice the number of edges is less tharwhich
implies that the average degree is less than six. It follows Fary’s construction. We construct a straight-line em-
that every planar graph has at least one vertex of degreebedding of a planar grap’ = (V, E) assumingG is
5 or less. This can be strengthened by saying that every maximally connected. Choose three vertices, ¢, con-
planar graph witm > 4 vertices has at least four vertices nected by three edges to form the outer triangle= Has
of degree at mosi each. To see this, assume the planar only n = 3 vertices we are done. Else it has at least one
graph is maximally connected and note that every vertex vertexu € V' = {a, b, c} with deg(u) < 5.
has degree at least The deficiency from degregis thus

at most3. The total deficiency in — 5,cy deg(v) = gtep 1. Removeu together with thé: = deg(u) edges
12 which implies that we have at least four vertices with incident tou. Add k — 3 edges to make the graph
positive deficiency. maximally connected again.

We need a little bit of geometry to prepare the construc-
tion of a straight-line embedding. A regidid C R? is
convex if z,y € R implies that the entire line segment
connectingrz andy is contained inR. Figure 76 shows Step 3. Remove the added — 3 edges and map to

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

regions of either kind. We calk star-convex of there is a pointe(u) in the interior of the kernel of the result-
a pointz € R such that for every point € R the line ing k-gon. Connect(u) with line segments to the
segment connectingwith z is contained ink. The set of vertices of thek-gon.
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Figure 78 illustrates the recursive construction. It is
straightforward to implement but there are numerical is-
sues in the choice af(u) that limit the usefulness of this
construction.

recurse i

add backu

-

Figure 78: We fix the outer triangle, remove the degiaertex,
recursively construct a straight-line embedding of the, rasd
finally add the vertex back.

Tutte’s construction. A more useful construction of a
straight-line embedding goes back to the work of Tutte.
We begin with a definition. Given a finite set of points,
., x;, theaverageis

J
1
— E ZTi.
n-

i=1

For j = 2, it is the midpoint of the edge and fgr= 3,

it is the centroid of the triangle. In general, the average
is a point somewhere between the LetG = (V, E)

be a maximally connected planar graph and, c three
vertices connected by three edges. We now follow Tutte’s
construction to get a mapping: V — R? so that the
straight-line drawing ot is a straight-line embedding.

T, T2, ..

x

Step 1. Mapa,b,cto pointse(a),e(b),e(c) spanning
atriangle inR2.

Step 2. Foreachvertex € V — {a,b,c}, let N,, be
the set of neighbors af. Mapw to the average of the
images of its neighbors, that is,

1
e(u) = ™ Z e(v).

VEN,,
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The fact that the resulting mapping: V' — R? gives a
straight-line embedding off is known as Tutte’s Theo-
rem. It holds even if7 is not quite maximally connected
and if the points are not quite the averages of their neigh-
bors. The proofis a bit involved and omitted.

The points:(u) can be computed by solving a system of
linear equations. We illustrate this for the graph in Figure
78. We set(a) = (7}), e(b) = (1)), e(c) = (9). The
other five points are computed by solving the system of
linear equationg&wv = 0, where

oo~ OO
O = = OO
—_ = = = =
e Al
OO = W
|
O = O = =
— Ol = O
W= OO

andyv is the column vector of points(a) to e(y). There

are really two linear systems, one for the horizontal and
the other for the vertical coordinates. In each system, we
haven — 3 equations and a total @f — 3 unknowns. This
gives a unique solution provided the equations are linearly
independent. Proving that they are is part of the proof of
Tutte’s Theorem. Solving the linear equations is a numeri-
cal problem that is studies in detail in courses on numerical
analysis.



