
17 Geometric Graphs

In the abstract notion of a graph, an edge is merely a pair of
vertices. The geometric (or topological) notion of a graph
is closer to our intuition in which we think of an edge as a
curve that connects two vertices.

Embeddings. Let G = (V, E) be a simple, undirected
graph and writeR2 for the two-dimensional real plane.
A drawing maps every vertexv ∈ V to a pointε(v) in
R

2, and it maps every edge{u, v} ∈ E to a curve with
endpointsε(u) andε(v). The drawing is anembedding if

1. different vertices map to different points;

2. the curves have no self-intersections;

3. the only points of a curve that are images of vertices
are its endpoints;

4. two curves intersect at most in their endpoints.

We can always map the vertices to points and the edges
to curves inR

3 so they form an embedding. On the other
hand, not every graph has an embedding inR

2. The graph
G is planar if it has an embedding inR2. As illustrated
in Figure 73, a planar graph has many drawings, not all of
which are embeddings. Astraight-line drawing or embed-

Figure 73: Three drawings ofK4, the complete graph with four
vertices. From left to right: a drawing that is not an embedding,
an embedding with one curved edge, a straight-line embedding.

ding is one in which each edge is mapped to a straight line
segment. It is uniquely determined by the mapping of the
vertices,ε : V → R

2. We will see later that every planar
graph has a straight-line embedding.

Euler’s formula. A face of an embeddingε of G is a
component of the thus defined decomposition ofR

2. We
write n = |V |, m = |E|, andℓ for the number of faces.
Euler’s formula says these numbers satisfy a linear rela-
tion.

EULER’ S FORMULA . If G is connected andε is an em-
bedding ofG in R

2 thenn − m + ℓ = 2.

PROOF. Choose a spanning tree(V, T ) of G = (V, E). It
hasn vertices,|T | = n − 1 edges, and one (unbounded)
face. We haven− (n− 1) + 1 = 2, which proves the for-
mula if G is a tree. Otherwise, draw the remaining edges,
one at a time. Each edge decomposes one face into two.
The number of vertices does not change,m increases by
one, andℓ increases by one. Since the graph satisfies the
linear relation before drawing the edge, it satisfies the re-
lation also after drawing the edge.

A planar graph ismaximally connected if adding any
one new edge violates planarity. Not surprisingly, a planar
graph of three or more vertices is maximally connected
iff every face in an embedding is bounded by three edges.
Indeed, suppose there is a face bounded by four or more
edges. Then we can find two vertices in its boundary that
are not yet connected and we can connect them by draw-
ing a curve that passes through the face; see Figure 74.
For obvious reasons, we call an embedding of a maxi-
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Figure 74: Drawing the edge froma to c decomposes the quad-
rangle into two triangles. Note that we cannot draw the edge
from b to d since it already exists outside the quadrangle.

mally connected planar graph withn ≥ 3 vertices atri-
angulation. For such graphs, we have an additional linear
relation, namely3ℓ = 2m. We can thus rewrite Euler’s
formula and getn−m + 2m

3
= 2 andn− 3ℓ

2
+ ℓ = 2 and

therefore

m = 3n− 6;

ℓ = 2n− 4,

Every planar graph can be completed to a maximally con-
nected planar graph. Forn ≥ 3 this implies that the planar
graph has at most3n − 6 edges and at most2n − 4 faces.

Forbidden subgraphs. We can use Euler’s relation to
prove that the complete graph of five vertices is not planar.
It hasn = 5 vertices andm = 10 edges, contradicting the
upper bound of at most3n − 6 = 9 edges. Indeed, every
drawing ofK5 has at least two edges crossing; see Figure
75. Similarly, we can prove that the complete bipartite
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Figure 75: A drawing ofK5 on the left and ofK3,3 on the right.

graph with three plus three vertices is not planar. It has
n = 6 vertices andm = 9 edges. Every cycle in a bipartite
graph has an even number of edges. Hence,4ℓ ≤ 2m.
Plugging this into Euler’s formula, we getn−m+ m

2
≥ 2

and thereforem ≤ 2n− 4 = 8, again a contradiction.

In a sense,K5 and K3,3 are the quintessential non-
planar graphs. To make this concrete, we still need an
operation that creates or removes degree-2 vertices. Two
graphs arehomeomorphic if one can be obtained from the
other by a sequence of operations, each deleting a degree-2
vertex and replacing its two edges by the one that connects
its two neighbors, or the other way round.

KURATOWSKI’ S THEOREM. A graphG is planar iff no
subgraph ofG is homeomorphic toK5 or to K3,3.

The proof of this result is a bit lengthy and omitted.

Pentagons are star-convex. Euler’s formula can also be
used to show that every planar graph has a straight-line
embedding. Note that the sum of vertex degrees counts
each edge twice, that is,

∑

v∈V deg(v) = 2m. For planar
graphs, twice the number of edges is less than6n which
implies that the average degree is less than six. It follows
that every planar graph has at least one vertex of degree
5 or less. This can be strengthened by saying that every
planar graph withn ≥ 4 vertices has at least four vertices
of degree at most5 each. To see this, assume the planar
graph is maximally connected and note that every vertex
has degree at least3. The deficiency from degree6 is thus
at most3. The total deficiency is6n −

∑

v∈V deg(v) =
12 which implies that we have at least four vertices with
positive deficiency.

We need a little bit of geometry to prepare the construc-
tion of a straight-line embedding. A regionR ⊆ R

2 is
convex if x, y ∈ R implies that the entire line segment
connectingx andy is contained inR. Figure 76 shows
regions of either kind. We callR star-convex of there is
a pointz ∈ R such that for every pointx ∈ R the line
segment connectingx with z is contained inR. The set of
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Figure 76: A convex region on the left and a non-convex star-
convex region on the right.

such pointsz is thekernel of R. Clearly, every convex re-
gion is star-convex but not every star-convex region is con-
vex. Similarly, there are regions that are not star-convex,
even rather simple ones such as the hexagon in Figure 77.
However, every pentagon is star-convex. Indeed, the pen-

z

Figure 77: A non-star-convex hexagon on the left and a star-
convex pentagon on the right. The dark region inside the pen-
tagon is its kernel.

tagon can be decomposed into three triangles by drawing
two diagonals that share an endpoint. Extending the inci-
dent sides into the pentagon gives locally the boundary of
the kernel. It follows that the kernel is non-empty and has
interior points.

Fáry’s construction. We construct a straight-line em-
bedding of a planar graphG = (V, E) assumingG is
maximally connected. Choose three vertices,a, b, c, con-
nected by three edges to form the outer triangle. IfG has
only n = 3 vertices we are done. Else it has at least one
vertexu ∈ V = {a, b, c} with deg(u) ≤ 5.

Step 1. Removeu together with thek = deg(u) edges
incident tou. Add k − 3 edges to make the graph
maximally connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addedk − 3 edges and mapu to
a pointε(u) in the interior of the kernel of the result-
ing k-gon. Connectε(u) with line segments to the
vertices of thek-gon.
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Figure 78 illustrates the recursive construction. It is
straightforward to implement but there are numerical is-
sues in the choice ofε(u) that limit the usefulness of this
construction.
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Figure 78: We fix the outer triangle, remove the degree-5 vertex,
recursively construct a straight-line embedding of the rest, and
finally add the vertex back.

Tutte’s construction. A more useful construction of a
straight-line embedding goes back to the work of Tutte.
We begin with a definition. Given a finite set of points,
x1, x2, . . . , xj , theaverage is

x =
1

n

j
∑

i=1

xi.

For j = 2, it is the midpoint of the edge and forj = 3,
it is the centroid of the triangle. In general, the average
is a point somewhere between thexi. Let G = (V, E)
be a maximally connected planar graph anda, b, c three
vertices connected by three edges. We now follow Tutte’s
construction to get a mappingε : V → R

2 so that the
straight-line drawing ofG is a straight-line embedding.

Step 1. Map a, b, c to pointsε(a), ε(b), ε(c) spanning
a triangle inR

2.

Step 2. For each vertexu ∈ V − {a, b, c}, let Nu be
the set of neighbors ofu. Mapu to the average of the
images of its neighbors, that is,

ε(u) =
1

|Nu|

∑

v∈Nu

ε(v).

The fact that the resulting mappingε : V → R
2 gives a

straight-line embedding ofG is known as Tutte’s Theo-
rem. It holds even ifG is not quite maximally connected
and if the points are not quite the averages of their neigh-
bors. The proof is a bit involved and omitted.

The pointsε(u) can be computed by solving a system of
linear equations. We illustrate this for the graph in Figure
78. We setε(a) =

(

−1

−1

)

, ε(b) =
(

1

−1

)

, ε(c) =
(

0

1

)

. The
other five points are computed by solving the system of
linear equationsAv = 0, where

A =













0 0 1 −5 1 1 1 1
0 0 1 1 −3 1 0 0
1 1 1 1 1 −6 1 0
0 1 1 1 0 1 −5 1
0 0 1 1 0 0 1 −3













andv is the column vector of pointsε(a) to ε(y). There
are really two linear systems, one for the horizontal and
the other for the vertical coordinates. In each system, we
haven− 3 equations and a total ofn− 3 unknowns. This
gives a unique solution provided the equations are linearly
independent. Proving that they are is part of the proof of
Tutte’s Theorem. Solving the linear equations is a numeri-
cal problem that is studies in detail in courses on numerical
analysis.
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