
20 Plane-sweep

Plane-sweep is an algorithmic paradigm that emerges in
the study of two-dimensional geometric problems. The
idea is to sweep the plane with a line and perform the com-
putations in the sequence the data is encountered. In this
section, we solve three problems with this paradigm: we
construct the convex hull of a set of points, we triangulate
the convex hull using the points as vertices, and we test a
set of line segments for crossings.

Convex hull. Let S be a finite set of points in the plane,
each given by its two coordinates. Theconvex hull of S,
denoted byconv S, is the smallest convex set that con-
tains S. Figure 91 illustrates the definition for a set of
nine points. Imagine the points as solid nails in a planar
board. An intuitive construction stretches a rubber band
around the nails. After letting go, the nails prevent the
complete relaxation of the rubber band which will then
trace the boundary of the convex hull.

6

7

4
1

2 9

8

3

5

Figure 91: The convex hull of nine points, which we represent
by the counterclockwise sequence of boundary vertices: 1, 3, 6,
8, 9, 2.

To construct the counterclockwise cyclic sequence of
boundary vertices representing the convex hull, we sweep
a vertical line from left to right over the data. At any mo-
ment in time, the points in front (to the right) of the line
are untouched and the points behind (to the left) of the line
have already been processed.

Step 1. Sort the points from left to right and relabel
them in this sequence asx1, x2, . . . , xn.

Step 2. Construct a counterclockwise triangle from
the first three points:x1x2x3 or x1x3x2.

Step 3. For i from 4 ton, add the next pointxi to the
convex hull of the preceding points by finding the
two lines that pass throughxi and support the con-
vex hull.

The algorithm is illustrated in Figure 92, which shows the
addition of the sixth point in the data set.

6

5

41

2 9

8

3

7

Figure 92: The vertical sweep-line passes through point 6. To
add 6, we substitute 6 for the sequence of vertices on the bound-
ary between 3 and 5.

Orientation test. A critical test needed to construct the
convex hull is to determine the orientation of a sequence
of three points. In other words, we need to be able to dis-
tinguish whether we make a left-turn or a right-turn as we
go from the first to the middle and then the last point in
the sequence. A convenient way to determine the orien-
tation evaluates the determinant of a three-by-three ma-
trix. More precisely, the pointsa = (a1, a2), b = (b1, b2),
c = (c1, c2) form a left-turn iff

det

1 a1 a2

1 b1 b2

1 c1 c2

 > 0.

The three points form a right-turn iff the determinant is
negative and they lie on a common line iff the determinant
is zero.

boolean LEFT(Points a, b, c)
return [a1(b2 − c2) + b1(c2 − a2)

+ c1(a2 − b2) > 0].

To see that this formula is correct, we may convince our-
selves that it is correct for three non-collinear points, e.g.
a = (0, 0), b = (1, 0), andc = (0, 1). Remember also
that the determinant measures the area of the triangle and
is therefore a continuous function that passes through zero
only when the three points are collinear. Since we can
continuously move every left-turn to every other left-turn
without leaving the class of left-turns, it follows that the
sign of the determinant is the same for all of them.

Finding support lines. We use a doubly-linked cyclic
list of vertices to represent the convex hull boundary. Each

74

node in the list contains pointers to the next and the previ-
ous nodes. In addition, we have a pointerlast to the last
vertex added to the list. This vertex is also the rightmost
in the list. We add thei-th point by connecting it to the
verticesµ → pt andλ → pt identified in a counterclock-
wise and a clockwise traversal of the cycle starting atlast ,
as illustrated in Figure 93. We simplify notation by using

last

µ

ν

λ

Figure 93: The upper support line passes through the first point
µ → pt that forms a left-turn fromν → pt to µ → next → pt .

nodes in the parameter list of the orientation test instead
of the points they store.

µ = λ = last ; create new node withν → pt = i;
while RIGHT(ν, µ, µ → next) do

µ = µ → next

endwhile;
while LEFT(ν, λ, λ → prev) do

λ = λ → prev

endwhile;
ν → next = µ; ν → prev = λ;
µ → prev = λ → next = ν; last = ν.

The effort to add thei-th point can be large, but if it is
then we remove many previously added vertices from the
list. Indeed, each iteration of the for-loop adds only one
vertex to the cyclic list. We charge $2 for the addition,
one dollar for the cost of adding and the other to pay for
the future deletion, if any. The extra dollars pay for all
iterations of the while-loops, except for the first and the
last. This implies that we spend only constant amortized
time per point. After sorting the points from left to right,
we can therefore construct the convex hull ofn points in
time O(n).

Triangulation. The same plane-sweep algorithm can be
used to decompose the convex hull into triangles. All
we need to change is that points and edges are never re-
moved and a new point is connected to every point exam-
ined during the two while-loops. We define a(geometric)
triangulation of a finite set of pointsS in the plane as a

maximally connected straight-line embedding of a planar
graph whose vertices are mapped to points inS. Figure 94
shows the triangulation of the nine points in Figure 91 con-
structed by the plane-sweep algorithm. A triangulation is

3

8

92

1

5

4

7

6

Figure 94: Triangulation constructed with the plane-sweepalgo-
rithm.

not necessarily a maximally connected planar graph since
the prescribed placement of the points fixes the boundary
of the outer face to be the boundary of the convex hull.
Letting k be the number of edges of that boundary, we
would have to addk − 3 more edges to get a maximally
connected planar graph. It follows that the triangulation
hasm = 3n − (k + 3) edges andℓ = 2n − (k + 2)
triangles.

Line segment intersection. As a third application of the
plane-sweep paradigm, we consider the problem of decid-
ing whether or notn given line segments have pairwise
disjoint interiors. We allow line segments to share end-
points but we do not allow them to cross or to overlap. We
may interpret this problem as deciding whether or not a
straight-line drawing of a graph is an embedding. To sim-
plify the description of the algorithm, we assume no three
endpoints are collinear, so we only have to worry about
crossings and not about other overlaps.

How can we decide whether or not a line segment
with endpointu = (u1, u2) and v = (v1, v2) crosses
another line segment with endpointsp = (p1, p2) and
q = (q1, q2)? Figure 95 illustrates the question by show-
ing the four different cases of how two line segments and
the lines they span can intersect. The line segments cross
iff uv intersects the line ofpq andpq intersects the line of
uv. This condition can be checked using the orientation
test.

boolean CROSS(Points u, v, p, q)
return [(L EFT(u, v, p) xor LEFT(u, v, q)) and

(LEFT(p, q, u) xor LEFT(p, q, v))].

We can use the above function to test all
(

n

2

)

pairs of line
segments, which takes time O(n2).

75

u

q

v

p

u

v

q

p

q
q v

u p

v

u

p

Figure 95: Three pairs of non-crossing and one pair of crossing
line segments.

Plane-sweep algorithm. We obtain a faster algorithm
by sweeping the plane with a vertical line from left to
right, as before. To avoid special cases, we assume that
no two endpoints are the same or lie on a common verti-
cal line. During the sweep, we maintain the subset of line
segments that intersect the sweep-line in the order they
meet the line, as shown in Figure 96. We store this subset

Figure 96: Five of the line segments intersect the sweep-line at
its current position and two of them cross.

in a dictionary, which is updated at every endpoint. Only
line segments that are adjacent in the ordering along the
sweep-line are tested for crossings. Indeed, two line seg-
ments that cross are adjacent right before the sweep-line
passes through the crossing, if not earlier.

Step 1. Sort the2n endpoints from left to right and re-
label them in this sequence asx1, x2, . . . , x2n. Each
point still remembers the index of the other endpoint
of its line segment.

Step 2. For i from 1 to 2n, process thei-th endpoint
as follows:

Case 2.1 xi is left endpoint of the line segment
xixj . Therefore,i < j. Insert xixj into
the dictionary and letuv andpq be its prede-
cessor and successor. If CROSS(u, v, xi, xj)
or CROSS(p, q, xi, xj) then report the crossing
and stop.

Case 2.2 xi is right endpoint of the line segment
xixj . Therefore,i > j. Let uv and pq be
the predecessor and the successor ofxixj . If
CROSS(u, v, p, q) then report the crossing and
stop. Deletexixj from the dictionary.

We do an insertion into the dictionary for each left end-
point and a deletion from the dictionary for each right
endpoint, both in time O(log n). In addition, we do at
most two crossing tests per endpoint, which takes constant
time. In total, the algorithm takes time O(n logn) to test
whether a set ofn line segments contains two that cross.

76

