
23 Easy and Hard Problems

The theory ofNP-completeness is an attempt to draw a
line between tractable and intractable problems. The most
important question is whether there is indeed a difference
between the two, and this question is still unanswered.
Typical results are therefore relative statements such as “if
problemB has a polynomial-time algorithm then so does
problemC” and its equivalent contra-positive “if prob-
lemC has no polynomial-time algorithm then neither has
problemB”. The second formulation suggests we remem-
ber hard problemsC and for a new problemB we first see
whether we can prove the implication. If we can then we
may not want to even try to solve problemB efficiently. A
good deal of formalism is necessary for a proper descrip-
tion of results of this kind, of which we will introduce only
a modest amount.

What is a problem? An abstract decision problemis a
function I → {0, 1}, whereI is the set of problem in-
stances and0 and1 are interpreted to meanFALSE and
TRUE, as usual. To completely formalize the notion, we
encode the problem instances in strings of zeros and ones:
I → {0, 1}∗. A concrete decision problemis then a func-
tion Q : {0, 1}∗ → {0, 1}. Following the usual conven-
tion, we map bit-strings that do not correspond to mean-
ingful problem instances to 0.

As an example consider the shortest-path problem. A
problem instance is a graph and a pair of vertices,u and
v, in the graph. A solution is a shortest path fromu and
v, or the length of such a path. The decision problem ver-
sion specifies an integerk and asks whether or not there
exists a path fromu to v whose length is at mostk. The
theory of NP-completeness really only deals with deci-
sion problems. Although this is a loss of generality, the
loss is not dramatic. For example, given an algorithm for
the decision version of the shortest-path problem, we can
determine the length of the shortest path by repeated de-
cisions for different values ofk. Decision problems are
always easier (or at least not harder) than the correspond-
ing optimization problems. So in order to prove that an
optimization problem is hard it suffices to prove that the
corresponding decision problem is hard.

Polynomial time. An algorithmsolvesa concrete deci-
sion problemQ in time T (n) if for every instancex ∈
{0, 1}∗ of lengthn the algorithm producesQ(x) in time
at mostT (n). Note that this is the worst-case notion of
time-complexity. The problemQ is polynomial-time solv-

ableif T (n) = O(nk) for some constantk independent of
n. The first important complexity class of problems is

P = set of concrete decision problems

that are polynomial-time solvable.

The problemsQ ∈ P are calledtractableor easyand the
problemsQ 6∈ P are calledintractableor hard. Algo-
rithms that take only polynomial time are calledefficient
and algorithms that require more than polynomial time
are inefficient. In other words, until now in this course
we only talked about efficient algorithms and about easy
problems. This terminology is adapted because the rather
fine grained classification of algorithms by complexity we
practiced until now is not very useful in gaining insights
into the rather coarse distinction between polynomial and
non-polynomial.

It is convenient to recast the scenario in a formal lan-
guage framework. Alanguageis a setL ⊆ {0, 1}∗. We
can think of it as the set of problem instances,x, that
have an affirmative answer,Q(x) = 1. An algorithm
A : {0, 1}∗ → {0, 1} acceptsx ∈ {0, 1}∗ if A(x) = 1
and itrejectsx if A(x) = 0. The languageacceptedbyA
is the set of stringsx ∈ {0, 1}∗ with A(x) = 1. There is
a subtle difference between accepting anddecidinga lan-
guageL. The latter means thatA accepts everyx ∈ L and
rejects everyx 6∈ L. For example, there is an algorithm
that accepts every program that halts, but there is no algo-
rithm that decides the language of such programs. Within
the formal language framework we redefine the class of
polynomial-time solvable problems as

P = {L ⊆ {0, 1}∗ | L is accepted by

a polynomial-time algorithm}

= {L ⊆ {0, 1}∗ | L is decided by

a polynomial-time algorithm}.

Indeed, a language that can be accepted in polynomial
time can also be decided in polynomial time: we keep
track of the time and if too much goes by withoutx be-
ing accepted, we turn around and rejectx. This is a non-
constructive argument since we may not know the con-
stants in the polynomial. However, we know such con-
stants exist which suffices to show that a simulation as
sketched exists.

Hamiltonian cycles. We use a specific graph problem to
introduce the notion of verifying a solution to a problem,
as opposed to solving it. LetG = (V,E) be an undi-
rected graph. Ahamiltonian cyclecontains every vertex

86



v ∈ V exactly once. The graphG is hamiltonianif it has
a hamiltonian cycle. Figure 108 shows a hamiltonian cy-
cle of the edge graph of a Platonic solid. How about the
edge graphs of the other four Platonic solids? DefineL =

Figure 108: The edge graph of the dodecahedron and one of its
hamiltonian cycles.

{G | G is hamiltonian}. We can thus ask whether or not
L ∈ P, that is, whether or not there is a polynomial-time
algorithm that decides whether or not a graph is hamilto-
nian. The answer to this question is currently not known,
but there is evidence that the answer might be negative. On
the other hand, supposey is a hamiltonian cycle ofG. The
languageL′ = {(G, y) | y is a hamiltonian cycle ofG} is
certainly in P because we just need to make sure thaty

andG have the same number of vertices and every edge of
y is also an edge ofG.

Non-deterministic polynomial time. More generally, it
seems easier to verify a given solution than to come up
with one. In a nutshell, this is whatNP-completeness is
about, namely finding out whether this is indeed the case
and whether the difference between accepting and verify-
ing can be used to separate hard from easy problems.

Call y ∈ {0, 1}∗ a certificate. An algorithmA verifies
a problem instancex ∈ {0, 1}∗ if there exists a certificate
y with A(x, y) = 1. The languageverifiedbyA is the set
of stringsx ∈ {0, 1}∗ verified byA. We now define a new
class of problems,

NP = {L ⊆ {0, 1}∗ | L is verified by

a polynomial-time algorithm}.

More formally,L is in NP if for every problem instance
x ∈ L there is a certificatey whose length is bounded
from above by a polynomial in the length ofx such that
A(x, y) = 1 andA runs in polynomial time. For exam-
ple, deciding whether or notG is hamiltonian is inNP.

The nameNP is an abbreviation fornon-deterministic
polynomial time, because a non-deterministic computer
can guess a certificate and then verify that certificate. In a
parallel emulation, the computer would generate all possi-
ble certificates and then verify them in parallel. Generat-
ing one certificate is easy, because it only has polynomial
length, but generating all of them is hard, because there
are exponentially many strings of polynomial length.

P =

co−NP
NPNP NP co−NP

P = NP = co−NP NP = co−NPP

P

Figure 109: Four possible relations between the complexity
classesP, NP, andco-NP.

Non-deterministic machine are at least as powerful as
deterministic machines. It follows that every problem in
P is also inNP, P ⊆ NP. Define

co-NP = {L | L = {x 6∈ L} ∈ NP},

which is the class of languages whose complement can
be verified in non-deterministic polynomial time. It is
not known whether or notNP = co-NP. For example,
it seems easy to verify that a graph is hamiltonian but
it seems hard to verify that a graph is not hamiltonian.
We said earlier that ifL ∈ P thenL ∈ P. Therefore,
P ⊆ co-NP. Hence, only the four relationships between
the three complexity classes shown in Figure 109 are pos-
sible, but at this time we do not know which one is correct.

Problem reduction. We now develop the concept of re-
ducing one problem to another, which is key in the con-
struction of the class ofNP-complete problems. The idea
is to map or transform an instance of a first problem to an
instance of a second problem and to map the solution to
the second problem back to a solution to the first problem.
For decision problems, the solutions are the same and need
no transformation.

LanguageL1 is polynomial-time reducibleto language
L2, denotedL1 ≤P L2, if there is a polynomial-time com-
putable functionf : {0, 1}∗ → {0, 1}∗ such thatx ∈ L1

iff f(x) ∈ L2, for all x ∈ {0, 1}∗. Now suppose that

87



L1 is polynomial-time reducible toL2 and thatL2 has a
polynomial-time algorithmA2 that decidesL2,

x
f

−→ f(x)
A2−→ {0, 1}.

We can compose the two algorithms and obtain a poly-
nomial-time algorithmA1 = A2 ◦ f that decidesL1. In
other words, we gained an efficient algorithm forL1 just
by reducing it toL2.

REDUCTION LEMMA . If L1 ≤P L2 andL2 ∈ P then
L1 ∈ P.

In words, if L1 is polynomial-time reducible toL2 and
L2 is easy thenL1 is also easy. Conversely, if we know
thatL1 is hard then we can conclude thatL2 is also hard.
This motivates the following definition. A languageL ⊆
{0, 1}∗ is NP-completeif

(1) L ∈ NP;

(2) L′ ≤P L, for everyL′ ∈ NP.

SinceeveryL′ ∈ NP is polynomial-time reducible toL,
all L′ have to be easy forL to have a chance to be easy.
The L′ thus only provide evidence thatL might indeed
be hard. We sayL is NP-hard if it satisfies (2) but not
necessarily (1). The problems that satisfy (1) and (2) form
the complexity class

NPC = {L | L is NP-complete}.

All these definitions would not mean much if we could
not find any problems inNPC. The first step is the most
difficult one. Once we have one problem inNPC we can
get others using reductions.

Satisfying boolean formulas. Perhaps surprisingly, a
first NP-complete problem has been found, namely the
problem of satisfiability for logical expressions. A
boolean formula, ϕ, consists of variables,x1, x2, . . ., op-
erators,¬,∧,∨,=⇒, . . ., and parentheses. Atruth assign-
mentmaps each variable to a boolean value,0 or 1. The
truth assignmentsatisfiesif the formula evaluates to 1. The
formula issatisfiableif there exists a satisfying truth as-
signment. Define SAT= {ϕ | ϕ is satisfiable}. As an
example consider the formula

ψ = (x1 =⇒ x2) ⇐⇒ (x2 ∨ ¬x1).

If we setx1 = x2 = 1 we get(x1 =⇒ x2) = 1, (x2 ∨
¬x1) = 1 and thereforeψ = 1. It follows thatψ ∈ SAT.

In fact, all truth assignments evaluate to1, which means
thatψ is really a tautology. In other words, its negation is
not in SAT.

SATISFIABILITY THEOREM. We have SAT∈ NP and
L′ ≤P SAT for everyL′ ∈ NP.

That SAT is in the classNP is easy to prove: just guess an
assignment and verify that it satisfies. However, to prove
that everyL′ ∈ NP can be reduced to SAT in polynomial
time is quite technical and we omit the proof. The main
idea is to use the polynomial-time algorithm that verifies
L′ and to construct a boolean formula from this algorithm.
To formalize this idea, we would need a formal model of a
computer, a Touring machine, which is beyond the scope
of this course.

88


