23 Easy and Hard Problems

The theory ofNP-completeness is an attempt to draw a

line between tractable and intractable problems. The most
important question is whether there is indeed a difference

between the two, and this question is still unanswered.
Typical results are therefore relative statements sucifas “
problemB has a polynomial-time algorithm then so does
problemC” and its equivalent contra-positive “if prob-
lem C has no polynomial-time algorithm then neither has
problemB”. The second formulation suggests we remem-
ber hard problemé&’ and for a new problen® we first see
whether we can prove the implication. If we can then we
may not want to even try to solve problebhefficiently. A
good deal of formalism is necessary for a proper descrip-
tion of results of this kind, of which we will introduce only

a modest amount.

What isa problem? An abstract decision problens a
function — {0,1}, wherel is the set of problem in-
stances an® and1 are interpreted to meamALSE and
TRUE, as usual. To completely formalize the notion, we

ableif T'(n) = O(n*) for some constari independent of
n. The first important complexity class of problems is

P set of concrete decision problems

that are polynomial-time solvable

The problemg) € P are calledractableor easyand the
problems@ ¢ P are calledintractable or hard. Algo-
rithms that take only polynomial time are callefficient
and algorithms that require more than polynomial time
are inefficient In other words, until now in this course
we only talked about efficient algorithms and about easy
problems. This terminology is adapted because the rather
fine grained classification of algorithms by complexity we
practiced until now is not very useful in gaining insights
into the rather coarse distinction between polynomial and
non-polynomial.

It is convenient to recast the scenario in a formal lan-
guage framework. Aanguageis a setl. C {0,1}*. We
can think of it as the set of problem instances,that
have an affirmative answe€)(z) = 1. An algorithm
A {0,1}* — {0,1} acceptse € {0,1}*if A(z) =1
and itrejectsz if A(z) = 0. The languageacceptedy A

encode the problem instances in strings of zeros and onesis the set of strings € {0,1}* with A(z) = 1. There is

I — {0,1}*. A concrete decision problers then a func-
tion @ : {0,1}* — {0, 1}. Following the usual conven-
tion, we map bit-strings that do not correspond to mean-
ingful problem instances to 0.

As an example consider the shortest-path problem. A
problem instance is a graph and a pair of vertiaeand
v, in the graph. A solution is a shortest path franand
v, or the length of such a path. The decision problem ver-
sion specifies an integérand asks whether or not there
exists a path fromu to v whose length is at mog¢t The
theory of NP-completeness really only deals with deci-
sion problems. Although this is a loss of generality, the
loss is not dramatic. For example, given an algorithm for

a subtle difference between accepting aedidinga lan-
guageL. The latter means that accepts every € L and
rejects everyr ¢ L. For example, there is an algorithm
that accepts every program that halts, but there is no algo-
rithm that decides the language of such programs. Within
the formal language framework we redefine the class of
polynomial-time solvable problems as

P {L C€{0,1}" | Lis accepted by
a polynomial-time algorithrh
{L C€{0,1}* | Lis decided by

a polynomial-time algorithrp

the deC_iSiOI‘l version of the shortest-path problem, we canndeed, a language that can be accepted in polynomial
determine the length of the shortest path by repeated de-time can also be decided in polynomial time: we keep

cisions for different values of. Decision problems are

track of the time and if too much goes by withaube-

always easier (or at least not harder) than the correspond-ing accepted, we turn around and rejectThis is a non-

ing optimization problems. So in order to prove that an
optimization problem is hard it suffices to prove that the
corresponding decision problem is hard.

Polynomial time. An algorithmsolvesa concrete deci-
sion problem@ in time T'(n) if for every instancer €
{0,1}* of lengthn the algorithm produce®(z) in time

at mostT'(n). Note that this is the worst-case notion of
time-complexity. The probler®) is polynomial-time solv-
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constructive argument since we may not know the con-
stants in the polynomial. However, we know such con-
stants exist which suffices to show that a simulation as
sketched exists.

Hamiltonian cycles. We use a specific graph problem to
introduce the notion of verifying a solution to a problem,
as opposed to solving it. Le&¥ = (V, E) be an undi-
rected graph. Ahamiltonian cyclecontains every vertex



v € V exactly once. The grapf¥ is hamiltonianif it has The nameNP is an abbreviation fonon-deterministic

a hamiltonian cycle. Figure 108 shows a hamiltonian cy- polynomial time, because a non-deterministic computer

cle of the edge graph of a Platonic solid. How about the can guess a certificate and then verify that certificate. In a

edge graphs of the other four Platonic solids? Define parallel emulation, the computer would generate all possi-
ble certificates and then verify them in parallel. Generat-
ing one certificate is easy, because it only has polynomial
length, but generating all of them is hard, because there
are exponentially many strings of polynomial length.

P = NP = co-NP

@ NP = co-NP

Figure 108: The edge graph of the dodecahedron and one of its
hamiltonian cycles.

{G | G is hamiltoniar}. We can thus ask whether or not
L € P, that is, whether or not there is a polynomial-time
algorithm that decides whether or not a graph is hamilto-

nian. The answer to this question is currently not known,  non_deterministic machine are at least as powerful as
but there is evidence that the answer might be negative. Onyeerministic machines. It follows that every problem in
the other hand, suppogés a hamiltonian cycle ofr. The Pis also inNP. P C NP. Define

languagd.’ = {(G, y) | v is a hamiltonian cycle of7} is

Figure 109: Four possible relations between the complexity
classes?, NP, andco-NP.

certainly in P because we just need to make sure that co-NP = {L|L={x¢L}eNP},
andG have the same number of vertices and every edge of
y is also an edge af. which is the class of languages whose complement can

be verified in non-deterministic polynomial time. It is

o o ) not known whether or noP = co-NP. For example,
Non-deterministic polynomial time. - More generally, it i seems easy to verify that a graph is hamiltonian but
seems easier to verify a given solution than to come up it seems hard to verify that a graph is not hamiltonian.
with one. In a nutshell, this is whatP-completeness is  \ve said earlier that i, € P thenT € P. Therefore,
about, namely finding out whether this is indeed the case p ~ o.NP. Hence, only the four relationships between
and whether the difference between accepting and Verify- (g three complexity classes shown in Figure 109 are pos-
ing can be used to separate hard from easy problems.  gjpje put at this time we do not know which one is correct.

Cally € {0,1}* acertificate An algorithm A verifies
a problem instance € {0, 1}* if there exists a certificate
y with A(z,y) = 1. The languageerifiedby A is the set
of stringsz € {0, 1}* verified by A. We now define a new
class of problems,

Problem reduction. We now develop the concept of re-
ducing one problem to another, which is key in the con-
struction of the class dfiP-complete problems. The idea
is to map or transform an instance of a first problem to an
NP = {LC{0,1}* | Lis verified by instance of a second problem and.to map th.e solution to
the second problem back to a solution to the first problem.
For decision problems, the solutions are the same and need
no transformation.

a polynomial-time algorithrh

More formally, L is in NP if for every problem instance
x € L there is a certificatgy whose length is bounded Languagel; is polynomial-time reducibléo language
from above by a polynomial in the length efsuch that Lo, denoted.; <p Lo, ifthereis a polynomial-time com-
A(xz,y) = 1 and A runs in polynomial time. For exam-  putable functionf : {0,1}* — {0,1}* such that: € L,

ple, deciding whether or na¥ is hamiltonian is inNP. iff f(x) € Lo, forallz € {0,1}*. Now suppose that
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L, is polynomial-time reducible td.. and thatl; has a
polynomial-time algorithm4, that decided.o,

e -5 fa) 22 {0, 1}

We can compose the two algorithms and obtain a poly-
nomial-time algorithmA; = A, o f that decided.;. In
other words, we gained an efficient algorithm for just

by reducing it toLs.

REDUCTIONLEMMA. If Ly <p L, andL, € P then
L, €P.

In words, if Ly is polynomial-time reducible td.» and
Lo is easy thernl; is also easy. Conversely, if we know
that L, is hard then we can conclude tha{ is also hard.
This motivates the following definition. A languageC
{0,1}* is NP-completdf

(1) L € NP;
(2) L' <p L, foreveryL’ € NP.

Sinceevery L’ € NP is polynomial-time reducible td,,

all L’ have to be easy fok to have a chance to be easy.
The L’ thus only provide evidence thdt might indeed

be hard. We say. is NP-hard if it satisfies (2) but not
necessarily (1). The problems that satisfy (1) and (2) form
the complexity class

NPC

= {L| LisNP-completé.

All these definitions would not mean much if we could
not find any problems itNPC. The first step is the most
difficult one. Once we have one problemhNiPC we can
get others using reductions.

Satisfying boolean formulas. Perhaps surprisingly, a
first NP-complete problem has been found, namely the
problem of satisfiability for logical expressions. A
boolean formulayp, consists of variables;;, xs, . . ., op-
erators,~, A, V,—, ..., and parentheses. thuth assign-
mentmaps each variable to a boolean valo@r 1. The
truth assignmerdatisfiesf the formula evaluatesto 1. The
formula is satisfiableif there exists a satisfying truth as-
signment. Define SAT= {¢ | ¢ is satisfiablé. As an
example consider the formula

(2

If we setx; = 29 = 1 we get(zy = a2) = 1, (22 V
—z1) = 1 and therefore) = 1. It follows thaty € SAT.

(Il - SCQ) <~ (SCQ \ _|SC1).
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In fact, all truth assignments evaluate itpwhich means
thate is really a tautology. In other words, its negation is
notin SAT.

SATISFIABILITY THEOREM. We have SAT¢ NP and
L' <p SAT foreveryL’ € NP.

That SAT is in the clasBIP is easy to prove: just guess an
assignment and verify that it satisfies. However, to prove
that everyL’ € NP can be reduced to SAT in polynomial
time is quite technical and we omit the proof. The main
idea is to use the polynomial-time algorithm that verifies
L' and to construct a boolean formula from this algorithm.
To formalize this idea, we would need a formal model of a
computer, a Touring machine, which is beyond the scope
of this course.



