
Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 1

Ray Tracing

CS 465 Lecture 3

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 2

Ray tracing idea

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 3

Ray tracing algorithm

for each pixel {

 compute viewing ray

 intersect ray with scene

 compute illumination at visible point

 put result into image

 }

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 4

Pinhole camera

•  Box with a tiny hole

•  Image is inverted

•  Perfect image if hole infinitely
small

•  Pure geometric optics based
on similar triangles

•  No depth of field issue

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 5

Camera Obscura

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 6

Abelardo Morell

•  Photographer who turns hotel room into �
a camera obscura (pinhole optics)

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 7

Durer’s Ray casting machine

•  Albrecht Durer, 16th century

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 8

Durer’s Ray casting machine

•  Albrecht Durer, 16th century

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 9

Durer’s Ray casting machine

•  Albrecht Durer, 16th century

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 10

Plane projection in drawing

[C

S
41

7
Sp

ri
ng

 2
00

2]

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 11

Plane projection in photography

•  This is another model for what we are doing

–  applies more directly in realistic rendering

[C
S

41
7

Sp
ri

ng
 2

00
2]

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 12

Simplified pinhole camera

•  Eye-image pyramid (frustum)

•  Note that the distance/size of image are arbitrary

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 13

Generating eye rays

•  Use window analogy directly

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 14

Vector math review

•  Vectors and points

•  Vector operations

–  addition

–  scalar product

•  More products

–  dot product

–  cross product

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 15

Ray: a half line

•  Standard representation: point p and direction d

–  this is a parametric equation for the line

–  lets us directly generate the points on the line

–  if we restrict to t > 0 then we have a ray

–  note replacing d with ad doesn’t change ray (a > 0)

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 16

Generating eye rays

•  Just need to compute the view plane point q:

–  we won’t worry about the details for now

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 17

Sphere equation

•  Sphere equation (implicit):

•  Assume unit dimensions,�
centered at origin

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 18

Explicit vs. implicit?

•  Sphere equation is implicit

–  Solution of an equation

–  Does not tell us how to generate a point on the sphere

–  Tells us how to check that a point is on the sphere

•  Ray equation is explicit

–  Parametric

–  How to generate points

–  Harder to verify that a point is on the ray

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 19

Ray-sphere intersection: algebraic

•  Condition 1: point is on ray

•  Condition 2: point is on sphere

–  assume unit sphere

•  Substitute:

–  this is a quadratic equation in t

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 20

Ray-sphere intersection: algebraic

•  Solution for t by quadratic formula:

–  simpler form holds when d is a unit vector�
but we won’t assume this in practice (reason later)

–  I’ll use the unit-vector form to make the geometric
interpretation

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 21

Ray-sphere intersection: algebraic

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 22

Ray-sphere intersection: geometric

•  What geometric information is important?

–  Inside/outside

–  Closest point

–  Direction

•  Geometric considerations can help shortcut calculations

–  easy reject

R
r

O

D

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 23

Ray-sphere intersection: geometric

•  Find if the ray’s origin is outside the sphere

–  R2>r2

–  If inside, it intersects

–  If on the sphere, it does not intersect (avoid degeneracy)

R
r

O

D

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 24

Ray-sphere intersection: geometric

•  Find if the ray’s origin is outside the sphere

•  Find the closest point to the sphere center

–  tP=RO.D

–  If tP<0, no hit

R
r

O

D tP P

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 25

Ray-sphere intersection: geometric

•  Find if the ray’s origin is outside the sphere

•  Find the closest point to the sphere center

–  If tP<0, no hit

•  Else find squared distance d2

–  Pythagoras: d2=R2-tP

2

–  …

R
r

O

D
P tP

d

if d2> r2 no hit

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 26

Ray-sphere intersection: geometric

•  Find if the ray’s origin is outside the sphere

•  Find the closest point to the sphere center

–  If tP<0, no hit

•  Else find squared distance d2

–  if d2 > r2 no hit

•  If outside t = tP-t’

–  t’2+d2=r2

•  If inside t = tP+t’

R

r
O

D
P tP

d
t

t’

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 27

Ray-sphere intersection: geometric

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 28

Geometric vs. algebraic

•  Algebraic was more simple �
(and more generic)

•  Geometric is more efficient

–  Timely tests

–  In particular for outside and pointing away

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 29

Image so far

•  With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 if (s.intersect(ray, 0, +inf) < +inf)

 image.set(ix, iy, white);

 }

Cornell CS465 Fall 2004 • Lecture 3
 © 2003 Steve Marschner • 30

Ray-box intersection

•  Could intersect with 6 faces individually

•  If axis-aligned, box is �
the intersection of 3 slabs

Cornell CS465 Fall 2004 • Lecture 3

•  2D example

•  3D is the same

© 2003 Steve Marschner • 31

Ray-slab intersection

Cornell CS465 Fall 2004 • Lecture 3
 © 2003 Steve Marschner • 32

Intersection ranges

•  Each intersection�
is an interval

•  Want last entry�
point and first �
exit point

Cornell CS417 Spring 2003 • Lecture 33
 © 2003 Steve Marschner • 33

General Ray-plane intersection

•  Condition 1: point is on ray

•  Condition 2: point is on plane

•  Condition 3: point is on the inside of all edges

•  First solve 1&2 (ray–plane intersection)

–  substitute and solve for t:

Cornell CS417 Spring 2003 • Lecture 33
 © 2003 Steve Marschner • 34

Ray-triangle intersection

•  In plane, triangle is the intersection of 3 half spaces

Cornell CS417 Spring 2003 • Lecture 33
 © 2003 Steve Marschner • 35

Inside-edge test

•  Need outside vs. inside

•  Reduce to clockwise vs. counterclockwise

–  vector of edge to vector to x

•  Use cross product to decide

Cornell CS417 Spring 2003 • Lecture 33
 © 2003 Steve Marschner • 36

Ray-triangle intersection

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 37

Intersection against many shapes

•  The basic idea is:

–  this is linear in the number of shapes�
but there are sublinear methods (acceleration structures)

hit (ray, tMin, tMax) {

 tBest = +inf; hitSurface = null;

 for surface in surfaceList {

 t = surface.intersect(ray, tMin, tMax);

 if t < tBest {

 tBest = t;

 hitSurface = surface;

 }

 }

 return hitSurface, t;

}

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 38

Image so far

•  With eye ray generation and scene intersection

Geometry g = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 c = scene.trace(ray, 0, +inf);

 image.set(ix, iy, c);

 }

…

trace(ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) return surface.color();

 else return black;

}

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 39

Shading

•  Compute light reflected toward camera

•  Inputs:

–  eye direction

–  light direction �

(for each of many lights)

–  surface normal

–  surface parameters �

(color, shininess, …)

•  More on this in the �
next lecture

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 40

Image so far

trace(Ray ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) {

 point = ray.evaluate(t);

 normal = surface.getNormal(point);

 return surface.shade(ray, point,"
 normal, light);

 }

 else return black;

}

…

shade(ray, point, normal, light) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

}

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 41

Shadows

•  Surface is only illuminated if nothing blocks its view of
the light.

•  With ray tracing it’s easy to check

–  just intersect a ray with the scene!

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 42

Image so far

shade(ray, point, normal, light) {

 shadRay = (point, light.pos - point);

 if (shadRay not blocked) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

 }

 return black;

}

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 43

Multiple lights

•  Important to fill in black shadows

•  Just loop over lights, add contributions

•  Ambient shading

–  black shadows are not really right

–  one solution: dim light at camera

–  alternative: all surface receive a bit more light

•  just add a constant “ambient” color to the shading…

Cornell CS465 Fall 2004 • Lecture 3
 © 2004 Steve Marschner • 44

Image so far

shade(ray, point, normal, lights) {

 result = ambient;

 for light in lights {

 if (shadow ray not blocked) {

 result += shading contribution;

 }

 }

 return result;

}

