Ray Tracing

CS 465 Lecture 3

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ |



Ray tracing idea

viewer (eye)

<

light source

E
3.
>
=3
o)
>

visible point

objects
in scene

Cornell CS465 Fall 2004 ¢ Lecture 3

© 2004 Steve Marschner ¢ 2



Ray tracing algorithm

\/
>/°\< light source
viewer (eye)

?

=

=,

Vi 3
/ ;

eW’Og %

for each pixel {
compute viewing ray
intersect ray with scene

compute illumination at visible point

objects
put result into image
}

in scene

visible point

Cornell CS465 Fall 2004 * Lecture 3

© 2004 Steve Marschner * 3



Pinhole camera

* Box with a tiny hole

* Image is inverted

Cornell CS465 Fall 2004 ¢ Lecture 3

* Perfect image if hole infinitely
small

* Pure geometric optics based
on similar triangles

* No depth of field issue

© 2004 Steve Marschner * 4



Camera Obscura

v.f _..A “_,,....ﬁ.. E :
i
it AR

ridd sk
SISO 4R

e S
g
e .

JEPCRR IR EIRERERY

}

© 2004 Steve Marschner * 5

Cornell CS465 Fall 2004 ¢ Lecture 3



Abelardo Morell

* Photographer who turns hotel room into

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 6



Durer’s Ray casting machine

 Albrecht Durer, 16% century

Cornell CS465 Fall 2004 ¢ Lecture 3

&2

© 2004 Steve Marschner * 7



Durer’s Ray casting machine

Albrecht Durer, 6™ century

© 2004 Steve Marschner * 8

Cornell CS465 Fall 2004 ¢ Lecture 3



Durer’s Ray casting machine

* Albrecht Durer, |16™ century

N

i)

i il

i

‘I\‘"{\

‘7 The movable threads
| (probably made of silk) were

stretched across the frame at
right angles to each other

PULLEY SYSTEM

At the wall, the string was attached
to a weight, which acted as a pulley
(see engraving), keeping the string
taut as it passed through the needle
eye and frame to the pointer at its
other end.

Pulley weight Pointer

Hinged
shutter

The foreshortened lute,
plotted point by point

Wooden frame

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 9



Plane pro;ectlon in drawmg

‘Basis Of Perspective — Lines Of Sight Through A Picture Plane = [19]

—
'~
o
=
N
‘€ * The concept of the picture plane may be betwr understood by Iookmg through aw mdow or othor transparent plane
& - froma fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subject, will
~ all intersect this plane. Therefore, if you were to reach out mth a grease pencil and draw the image of the subject
< on this plane you would be “tracing out” the infinite number of points of intersection of sxght rays and plane. The
8 result would be that you would have “transferred” a real thre¢-dimensional object to a two- dimensiona¥plane. b
& ; : 3

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 10



Plane projection in photography

* This is another model for what we are doing

— applies more directly in realistic rendering

[CS 417 Spring 2002]

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ ||



Simplified pinhole camera

* Eye-image pyramid (frustum)

* Note that the distance/size of image are arbitrary

>

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 12



!
.

Generating eye rays

1\

 Use window analogy directly = :

viewpoint

/BT view plane c

pixel
position

viewing ray ¢

braham Bosse, Les Perspecteurs. Gravure extraite de la M

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 13



Vector math review

* Vectors and points
* Vector operations
— addition
— scalar product
* More products
— dot product

— cross product

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 14



Ray: a half line

* Standard representation: point p and direction d
r(t) =p+td
— this is a parametric equation for the line
— lets us directly generate the points on the line
— if we restrict to t > 0 then we have a ray

— note replacing d with ad doesn’t change ray (a > 0)

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 15



Generating eye rays

* Just need to compute the view plane point q:

view plane

p\>>nL/BT
d=q-p \/q
\
\

ri)=p+ud

— we won'’t worry about the details for now

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 16



Sphere equation

* Sphere equation (implicit):
x| =1« [x[I* =1
f(x)=x-x—1=0

* Assume unit dimensions,

centered at origin

>

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 17



Explicit vs. implicit?

* Sphere equation is implicit
— Solution of an equation
— Does not tell us how to generate a point on the sphere
— Tells us how to check that a point is on the sphere
* Ray equation is explicit
— Parametric
— How to generate points

— Harder to verify that a point is on the ray

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 18



Ray-sphere intersection: algebraic

* Condition |: point is on ray
r(t) =p+td

* Condition 2: point is on sphere

— assume unit sphere

Ix[ =1 |x|*=1
f(x)=x-x—1=0

* Substitute:
(Pp+td)-(p+td) —1=0

— this is a quadratic equation in t

Cornell CS465 Fall 2004 * Lecture 3

© 2004 Steve Marschner * |19



Ray-sphere intersection: algebraic

* Solution for t by quadratic formula:

,_—d-pt\(d-p?-(d-dp-p-1)
d-d

t=-d-px+(d-p)??—p-p+1

— simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

— I'll use the unit-vector form to make the geometric
interpretation

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 20



Ray-sphere intersection: algebraic

Ray-Sphere Intersection

Ray: P=0+D
Sphere: (P—C)2 —R*=0

(0-D-C) -R*=0

—b+\/b“—4ac at> +bt+c=0
a=D" =1

/o/ézﬁ - S

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner * 21




Ray-sphere intersection: geometric

* What geometric information is important?
— Inside/outside
— Closest point
— Direction
* Geometric considerations can help shortcut calculations

— easy reject

D R

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 22



Ray-sphere intersection: geometric

* Find if the ray’s origin is outside the sphere
_ R2>r2
— If inside, it intersects

— If on the sphere, it does not intersect (avoid degeneracy)

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 23



Ray-sphere intersection: geometric

* Find if the ray’s origin is outside the sphere

* Find the closest point to the sphere center
- t,=RO.D

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 24



Ray-sphere intersection: geometric

* Find if the ray’s origin is outside the sphere
* Find the closest point to the sphere center
— If t,<0, no hit

* Else find squared distance d?
— Pythagoras: d?=R2-t;?
— ... if d>> r? no hit

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 25



Ray-sphere intersection: geometric

*  Find if the ray’s origin is outside the sphere ° If Outside t=t _t’
*  Find the closest point to the sphere center P
—  If t,<0, no hit — t'2+d?%=r?

«  Else find squared distance d?
— ifd>>r2 no hit

* Ifinside t = tp+t’

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 26



Ray-sphere intersection: geometric

l]

w \
)
\ n

’—"./dV
P
tm =—p-d
2 =p-p—(p-d)?
At:\/l—l,?n

— /a7 —p pl
tog =tmEAt=-p-d+t+/(p-d)?2—p-p+1

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 27




Geometric vs. algebraic

* Algebraic was more simple
(and more generic)

e Geometric is more efficient
— Timely tests

— In particular for outside and pointing away

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 28



Image so far

* With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix<nx {
ray = camera.getRay(ix, iy);
if (s.intersect(ray, O, +inf) < +inf)
image.set(ix, iy, white);

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 29



Ray-boXx intersection

* Could intersect with 6 faces individually

* If axis-aligned, box is
the intersection of 3 slabs

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2003 Steve Marschner ¢ 30



Ray-slab intersection

* 2D example

* 3D is the same (dy, dy)

Ymin

Ymax

Pz + Lzmin by — Tmin

Lemin = (xmin — px)/da: Pup)

Py + tymin dy — Ymin Xmin Xmax

tymin — (ymin — py)/d'y

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2003 Steve Marschner * 31



Intersection ranges

* Each intersection ymax
is an interval

* Want last entry
point and first - i
exit point

txmin

tmin = maX(ta:min; tymin)

te [ bmin &max] —® -
tmax = lnln(ta:maxa tyma,x)
te [ fymin: fymax ] L *—
te [ tumin tmax] N [ bymin- tymax] ey

Shirley fig. 10.16

Cornell CS465 Fall 2004 * Lecture 3 © 2003 Steve Marschner ¢ 32



General Ray-plane intersection

Condition |: point is on ray

r(t) =p+td
Condition 2: point is on plane

(x—a) - n=0
Condition 3: point is on the inside of all edges

First solve | &2 (ray—plane intersection)
— substitute and solve for t:

(p+td—a) n=0

(a—p)'n

$ —
d n

Cornell CS417 Spring 2003 * Lecture 33 © 2003 Steve Marschner ¢« 33



Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

Cornell CS417 Spring 2003 * Lecture 33 © 2003 Steve Marschner * 34



Inside-edge test

* Need outside vs. inside

e Reduce to clockwise vs. counterclockwise

— vector of edge to vector to X

* Use cross product to decide

% e
1 T sl OJ\
“ ///
J’\})
o
/"!(-/ <é IEOA
/A"‘\~_\
Sl "7 .
= K 4
=
- 0 I

Cornell CS417 Spring 2003 * Lecture 33 © 2003 Steve Marschner * 35



Ray-triangle intersection

(b—a)x(x—a)-n>0
(c—b)x(x—b)-n>0

(a—c)x(x—c)-n>0

Cornell CS417 Spring 2003 * Lecture 33 © 2003 Steve Marschner * 36



Intersection against many shapes

* The basic idea is:

hit (ray, tMin, tMax) {
tBest = +inf; hitSurface = null;
for surface in surfaceList {

t = surface.intersect(ray, tMin, tMax);
if t <tBest {

tBest = t;
hitSurface = surface;
}
}
return hitSurface, t;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 37



Image so far

* With eye ray generation and scene intersection

Geometry g = new Sphere((0.0, 0.0, 0.0), 1.0),
for 0 <=iy <ny
forO<=ix<nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, O, +inf);
image.set(ix, iy, ¢);

}

trace(ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax);
if (surface != null) return surface.color();
else return black;

}

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2004 Steve Marschner ¢ 38




Shading

* Compute light reflected toward camera

* Inputs:
i

— eye direction N >
— light direction \ /
(for each of many lights) v AR

VE
— surface normal

— surface parameters
(color, shininess, ...)

* More on this in the
next lecture

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 39



Image so far

trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax);
if (surface != null) {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light);

}

else return black;

}

shade(ray, point, normal, light) {
v_E = —normalize(ray.direction);
v_L = normalize(light.pos - point);
// compute shading

}

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2004 Steve Marschner ¢ 40



Shadows

* Surface is only illuminated if nothing blocks its view of
the light.

* With ray tracing it’s easy to check

— just intersect a ray with the scene!

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner ¢ 41



Image so far

shade(ray, point, normal, light) {
shadRay = (point, light.pos - point);
if (shadRay not blocked) {
v_E = —normalize(ray.direction);
v_L = normalize(light.pos - point);
// compute shading
}

return black;

}

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2004 Steve Marschner ¢ 42



Multiple lights

* Important to fill in black shadows
* Just loop over lights, add contributions

* Ambient shading
— black shadows are not really right
— one solution: dim light at camera
— alternative: all surface receive a bit more light

* just add a constant “ambient” color to the shading...

Cornell CS465 Fall 2004 * Lecture 3 © 2004 Steve Marschner « 43



Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;

}
J

return result;

}

Cornell CS465 Fall 2004 ¢ Lecture 3 © 2004 Steve Marschner 44



