Coordinate Systems -

Point Representation in two dimensions

- \star Cartesian Coordinates: (x, y)
- \star Polar Coordinates: (ρ, θ)

Cartesian Coordinates

$$p = \left[\begin{array}{c} x \\ y \end{array} \right]$$

Polar Coordinates

Translation in 2D

Moving the object along a line from one location to another.

$$p = (x, y), t = (t_x, t_y), p' = (x', y')$$
$$x' = x + t_x, \quad y' = y + t_y, p' = p + t.$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \underbrace{\begin{bmatrix} t_x \\ t_y \end{bmatrix}}_{T(t)} + \begin{bmatrix} x \\ y \end{bmatrix}$$

Translation in 2D -

Translating a rigid body:

Translate every point of Δ by t.

$$\Delta' = \{ p + t \mid p \in \Delta \}.$$

Enough to translate the vertices.

Rotation in 2D

Rotation by θ with respect to origin.

$$x = r \cos \phi, \quad y = r \sin \phi.$$

$$x' = r \cos(\theta + \phi)$$

$$= r \cos \theta \cos \phi - r \sin \theta \sin \phi$$

$$= x \cos \theta - y \sin \theta.$$

$$y' = r \sin(\theta + \phi)$$
$$= x \sin \theta + y \cos \theta.$$

Rotation in 2D

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{R}(\theta)$$

$$p' = R \cdot p$$

Suppose $R(\theta) = [R_1(\theta) R_2(\theta)].$

$$R(\theta) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = R_1(\theta)$$

$$R(\theta) \begin{vmatrix} 0 \\ 1 \end{vmatrix} = \begin{vmatrix} -\sin\theta \\ \cos\theta \end{vmatrix} = R_2(\theta)$$

Rotation in 2D

Rotation w.r.t. (α, β) :

$$x = \alpha + r\cos\phi \implies r\cos\phi = x - \alpha$$

$$y = \beta + r \sin \phi \quad \Rightarrow \quad r \sin \phi = y - \beta$$

$$x' = \alpha + r \cos(\theta + \phi)$$

$$= \alpha + r \cos \theta \cos \phi - r \sin \theta \sin \phi$$

$$= \alpha + (x - \alpha) \cos \theta - (y - \beta) \sin \theta$$

$$y' = \beta + (x - \alpha)\sin\theta + (y - \beta)\cos\theta.$$

Scaling in 2D -

Scale by factor (s_x, s_y)

$$x' = x \cdot s_x \qquad y' = y \cdot s_y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{S}(\mathbf{x}, \mathbf{y})$$

Uniform scaling $s_x = s_y$

Matrix Representation of Transforms

$$P' = AP + B$$

Translation by (t_x, t_y) :

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad B = \left[\begin{array}{c} t_x \\ t_y \end{array} \right]$$

Rotation by θ :

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Scaling by (s_x, s_y) :

$$A = \left[\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array} \right] \quad B = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

Composite Transformation –

$$T_1 = (A_1, B_1)$$
 $T_2 = (A_2, B_2)$
 $T_2 \cdot T_1(P) = A_2 \cdot (A_1P + B_1) + B_2$

Noncommutativity of Transforms —

Homogeneous Coordinates

Homogeneous coordinates unify translation, rotation, and scaling in one transformation matrix.

Transformation matrix is 3×3 matrix.

Translation

$$p = (x, y, w) \rightarrow \left(\frac{x}{w}, \frac{y}{w}\right)$$

$$t = (t_x, t_y)$$

$$p' = p + t = \left(\frac{x}{w} + t_x, \frac{y}{w} + t_y\right)$$

$$p' = (x + t_x \cdot w, y + t_y \cdot w, w)$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{T}(\mathbf{t_x}, \mathbf{t_y})$$

$$T(t_x, t_y)^{-1} = T(-t_x, -t_y)$$

Homogeneous Coordinates -

Rotation

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{R}(\theta)$$

$$R(\theta)^{-1} = R(-\theta)$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{S}(\mathbf{s_x}, \mathbf{s_y})$$

$$S(s_x, s_y)^{-1} = S(1/s_x, 1/s_y)$$

2D Rotation revisited

Rotation w.r.t a point $q(\alpha, \beta)$ by angle θ Regard as a composite transform.

2D Rotation

- ★ Translate by $T(-\alpha, -\beta)$ so that q becomes the origin.
- \star Rotate by θ with respect to the origin; $R(\theta)$.
- ★ Translate by $T(\alpha, \beta)$ to bring q back to its original position.

$$R(\theta, \alpha, \beta) = T(\alpha, \beta) \cdot R(\theta) \cdot T(-\alpha, -\beta).$$

2D Rotation: Few Remarks

- * Rotation involves either trigonometric functions or $\sqrt{}$ Use Power series to approximate rotation for small values of θ
- \star Consider the upper-left 2 × 2 matrix of $R(\theta)$ and regard the rows as vectors in the plane

$$v_1 = (\cos \theta, -\sin \theta),$$

 $v_2 = (\sin \theta, \cos \theta).$

Euclidean Transform

Euclidean transformation

- ★ Rigid Body transformations
- **★** Translation and Rotation
- * Angles and distances are unchanged

$$T(\theta, t_x, t_y) = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Shear Transform

$$SH_x(a) = \left[egin{array}{ccc} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

$$x' = x + ay, \quad y' = y.$$

Horizontal segment at height y is shifted in the x-direction by ay.

Not a Euclidean transform.

3D Transforms

Homogeneous coordinates

$$(x, y, z, w) \Longrightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right).$$

Right Hand System:

Positive rotation defined as:

- ★ Look toward origin from a positive axis,
- $\star \pi/2$ counter-clockwise rotation transforms one axis to another.

$$x: y \to z, \quad y: z \to x, \quad z: x \to y.$$

Some graphics systems use the left hand system.

Translation

Translation by (t_x, t_y, t_z)

$$p = (x, y, z, w), t = (t_x, t_y, t_z)$$

$$p' = (x', y', z', w')$$

$$= (x + w \cdot t_x, y + w \cdot t_y, z + w \cdot t_z, w).$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\mathbf{T}(\mathbf{t_x}, \mathbf{t_y}, \mathbf{t_z})$$

$$T(t_x, t_y, t_z)^{-1} = T(-t_x, -t_y, -t_z)$$

Scaling |

Scaling by
$$(s_x, s_y, s_z)$$

$$p = (x, y, z, w)$$
 $s = (s_x, s_y, s_z)$
 $p' = (x', y', z', w') = (x \cdot s_x, y \cdot s_y, z \cdot s_z, w).$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\mathbf{S}(\mathbf{s_x}, \mathbf{s_y}, \mathbf{s_z})$$

$$S(s_x, s_y, s_z)^{-1} = S(1/s_x, 1/s_y, 1/s_z)$$

Rotation in 3D

Rotation w.r.t. a line: Axis of rotation

Axis of rotation: z-axis

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$z' = z$$

$$\left[egin{array}{c} x' \ y' \ z' \ w' \end{array}
ight] = \left[egin{array}{ccccc} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] \cdot \left[egin{array}{c} x \ y \ z \ w \end{array}
ight]$$

 $\mathbf{R_z}(\theta)$

Rotation w.r.t. x-axis

Substitute $x \to y, y \to z, z \to x$.

$$y' = y \cos \theta - z \sin \theta$$

$$z' = y \sin \theta + z \cos \theta$$

$$x' = x$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotation w.r.t. *y*-axis —

Substitute $x \to y, y \to z, z \to x$ in the previous equations.

$$z' = z \cos \theta - x \sin \theta$$

$$x' = z \sin \theta + x \cos \theta$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Transformations in OpenGL

- ★ glMatrixMode (mode)
 - Specifies the matrix that will be modified.
 - GL_MODELVIEW , GL_PROJECTION, GL_TEXTURE.
- ★ glLoadIdentity ()
 Sets the current matrix to the 4 × 4 identity
 matrix.
- \star glLoadMatrix{fd} (type *M) Sets the current matrix to M.
- ★ glMultMatrix{fd} (type *M)

 Multiplies the current matrix by M;

 C: current matrix.

$$C = C \times M$$
.

Transformations in OpenGL

 \bigstar glTranslate{fd} (x, y, z) Translates an object by (x, y, z).

$$C = C \times T(x, y, z)$$

★ glScale{fd} (x, y, z)Scales an object by (x, y, z).

$$C = C \times S(x, y, z)$$

* glRotate{fd} (α, x, y, z) Rotates an object by angle α w.r.t. the ray emanating from the origin to the point (x, y, z).

$$C = C \times R(\alpha, x, y, z)$$

Order of multiplication -

Last transformation is applied first!

```
\begin{array}{ll} \texttt{glLoadIdentity}(); & C = I \\ \texttt{glMultMatrixf} \; (\texttt{L}); & C = L \\ \texttt{glMultMatrixf} \; (\texttt{M}); & C = L \times M \\ \texttt{glMultMatrixf} \; (\texttt{N}); & C = L \times M \times N \\ \texttt{glBegin}(\texttt{GL\_POINT}) & \texttt{glVertex3f}(v); \\ \texttt{glEnd}(); & \\ \end{array}
```

$$v' = C \times v = L \times M \times N \times v$$

Order of multiplication -

Assume the object comes with its own coordinate system.

- ★ Keep the object coordinates the same as world coordinates and transform the object.
- ★ Transform the object coordinate system.

Multiple Coordinate systems

 C_i : *i*-th coordinate system.

 $P^{(i)}$: Coordinates of P in C_i

 M_{ij} : Transformation $C_j \to C_i$.

$$P^{(i)} = M_{ij} \cdot P^{(j)}.$$

$$M_{ik} = M_{ij} \cdot M_{jk}$$
$$M_{ij} = M_{ji}^{-1}.$$

 $Q^{(j)}$: A geometric transform in C_j .

$$Q^{(i)} = M_{ij} \cdot Q^{(j)} \cdot M_{ji} = M_{ij} \cdot Q^{(j)} \cdot M_{ij}^{-1}.$$

Multiple Coordinate Systems -

Coordinate systems: World, tricycle, wheels

As the front wheel rotates around its z-axis:

- \bigstar Both wheels rotate about the z-axes of wheels coordinate system.
- ★ Tricycle moves as a whole.
- ★ Both tricycle and wheels move w.r.t world coordinates.
- \star Wheel and tricycle coordinates are related by translation in x and z directions and rotation in y-direction.

