2D Geometric Transformations
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A little quick math background

e Linear transformations

* Matrices

— Matrix-vector multiplication

— Matrix-matrix multiplication

* Implicit and explicit geometry
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Implicit representations

* Equation to tell whether we are on the curve
v flv) =0}
* Example: line
—A{v|v-u+k =0}
* Example: circle
-{v|(v—-p): (v-p)+r" =0}

* Always define boundary of region

— (if f is continuous)
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Explicit representations

* Also called parametric

* Equation to map domain into plane

-{f(t) |t e Dj

* Example: line
- {p+tul|teR}
* Example: circle
- {p+rfcost sint]! |t €[0,27)}
* Like tracing out the path of a particle over time
* Variable t is the “parameter”
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Transforming geometry

* Move a subset of the plane using a mapping from the
plane to itself

_S > {T(v)|veS)
* Parametric representation:

-1f()[te Dy = {T(f(@t))|t € D}

* Implicit representation:
-V [ f(v) =0; = {T(v)[ f(v) =0}
- ={vIT7(f(v)) =0}
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Translation

* Simplest transformation: 7'(v) = v + u
e Inverse: T '(v)=v —u

* Example of transforming circle
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Linear transformations

* Any transformation with the property:
- T(au+v) =al(u)+T(v)
* Can be represented using matrix multiplication

- T(v)=Mv
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Geometry of 2D linear trans.

* 2x2 matrices have simple geometric interpretations
— uniform scale
— non-uniform scale
— rotation
— shear

— reflection

* Reading off the matrix
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Linear transformation gallery

e Uniform scale
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Linear transformation gallery

e Nonuniform scale |5z 01 |z _ |S=T
_O Sy| Y. Syl |

1.5 0|

_O 0.8_
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Linear transformation gallery

. Rotation |€0s0 —sinf| [z]  [zcos® —ysind
sinf  cosf | |y| |wsinf+ ycosh

0.866 —.05

0.5 0.866]

|
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Linear transformation gallery

 Reflection

— can consider it a special case
of nonuniform scale - -
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Linear transformation gallery

e Shear

0
_O 1_
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Composing transformations

* Want to move an object, then move it some more

- p—T(p) = S(T(p) = (ST)(p)
* We need to represent So T

— and would like to use the same representation as for S and T

* Translation easy
- I'(p) =p+ur;S(p) =p+us
(SoT)(p) =p+ (ur + us)

e commutative!
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Composing transformations

* Linear transformations also straightforward

- T(p) = Mrp; S(p) = Msp
(S O T)(p) — MsMTp

* only sometimes commutative
— e.g. rotations & uniform scales

— e.g. non-uniform scales w/o rotation
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Combining linear with translation

* Need to use both in single framework
e Can represent arbitrary seq. as 7' (p) = Mp + u
- T'(p) = Mrp +ur
- S(p) = Msp + us
- (SoT)(p)=Msg(Mrp+ur) + ug
= (MsM7)p + (Msur + ug)
~eg ST(0)) = S(ur)

 This will work but is a little awkward
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Homogeneous coordinates

* A trick for representing the foregoing simply

* Extra component w for vectors, extra row/column for

matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra

row and column

SO K
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Homogeneous coordinates

* Represent translation using the extra column

T xr+t
yl = |y s
] ]

o O
O = O
VA
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Homogeneous coordinates

e Composition just works, by 3x3 matrix multiplication

Ms us

0 1

MT ur

0

1

1

p

1

(MsM7)p + (Mgsur + ug)

 This is exactly the same as carrying around M p + u

— but cleaner

— and generalizes in useful ways as we’ll see later
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Affine transformations

* The set of transformations we have been looking at is
known as the “affine” transformations
— straight lines preserved; parallel lines preserved

— ratios of lengths along lines preserved (midpoints preserved)

A
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Affine transformation gallery

* Translation

Cornell CS465 Fall 2004 * Lecture 8

& O

o = O

i
8

1
0
0

0 2.15]
1 0.85
0 1

© 2004 Steve Marschner « 21



Affine transformation gallery

e Uniform scale s 0 O 1.5 0 O
0 s O O 15 0
0 0 1 0 0 1
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Affine transformation gallery

e Nonuniform scale
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Affine transformation gallery

e Rotation _COS 9
sin @

0
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Affine transformation gallery

* Reflection —1 0 0]
— can consider it a special case 0 I O
of nonuniform scale 0O 0 1
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Affine transformation gallery

e Shear
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General affine transformations

* The previous slides showed “canonical” examples of
the types of affine transformations

* Generally, transformations contain elements of
multiple types
— often define them as products of canonical transforms

— sometimes work with their properties more directly

Cornell CS465 Fall 2004 * Lecture 8 © 2004 Steve Marschner ¢ 27



Composite affine transformations

* In general not commutative: order matters!

A A

rotate, then translate translate, then rotate
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Composite affine transformations

* Another example

scale, then rotate rotate, then scale
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More math background

* Linear independence and bases
* Orthonormal matrices

* Coordinate systems
— Expressing vectors with respect to bases

— Linear transformations as changes of basis
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Rigid motions

* A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix

R —

0 o

0 1

* Inverse of orthonormal matrix is transpose

— so inverse of rigid motion is easy:

R R =
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Composing to change axes

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

t M =T 'RT

A
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Composing to change axes

* Want to scale along a particular axis and point

* Know how to scale along the y axis at the origin

— so translate to the origin and rotate to align axes

M=T"'RISRT
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Affine change of coordinates

* Six degrees of freedom

_a,l a9 ag_ r g
u vV D
a4 a5 das or 0 0 1
0 0 1 : -
A
) 3
® | V
0 e u
P
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Transforming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)
— points have a location

* represented by vector offset from a fixed origin

* Points and vectors transform differently
— points respond to translation; vectors do not
v=p—(q
T(x)=Mx+t
T(p—q)=Mp+t—(Mq+t)
=M(p-—q)+(t—t)=Mv
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Transforming points and vectors

* Homogeneous coords. let us exclude translation
— just put O rather than | in the last place

M t||p| |Mp+t M t||v| |[Mv
ol 1| (1|~ 1 ol 10| | O
— and note that subtracting two points cancels the extra
coordinate, resulting in a vector!

* Preview: projective transformations

— what’s really going on with this last coordinate?
— think of R embedded in R3: all affine xfs. preserve z=1 plane

— could have other transforms; project back to z=|
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Affine change of coordinates

* Coordinate frame: point plus basis

* Interpretation: transformation v
changes representation of u
point from one basis to another p

* “Frame to canonical” matrix has
frame in columns [u v p}
— takes points represented in frame 0 0 1

— represents them in canonical basis
Seems backward but bears thinking about
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Affine change of coordinates

* When we move an object to the origin to apply a
transformation, we are really changing coordinates
— the transformation is easy to express in object’s frame

— so define it there and transform it

T, = FTprF~1

— T, is the transformation expressed wrt. {e|, e,}
— Tgis the transformation expressed in natural frame

— Fis the frame-to-canonical matrix [u v p]

* This is a similarity transformation
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Coordinate frame summary

* Frame = point plus basis

* Frame matrix (frame-to-canonical) is

jlu v p
r=(5 0 %

* Move points to and from frame by multiplying with F
pe = Fpr pr=F"'pe

* Move transformations using similarity transforms

T,=FITpF ' Te=F'T.F
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