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3D Viewing

CS 465 Lecture 10
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History of projection

• Ancient times: Greeks wrote about laws of perspective
• Renaissance: perspective is adopted by artists

Duccio c. 1308
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History of projection

• Later Renaissance: perspective formalized precisely

da Vinci c. 1498
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Plane projection in drawing
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Plane projection in drawing
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Plane projection in photography

• This is another model for what we are doing
– applies more directly in realistic rendering
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Plane projection in photography
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Ray generation vs. projection

• Viewing in ray tracing
– start with image point
– compute ray that projects to that point
– do this using geometry

• Viewing by projection
– start with 3D point
– compute image point that it projects to
– do this using transforms

• Inverse processes
– ray gen. computes the preimage of projection
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Classical projections

• Emphasis on cube-like objects
– traditional in mechanical and architectural drawing

Planar Geometric Projections

Parallel

Oblique

Multiview
Orthographic

Perspective

One-point Two-point Three-pointOrthographic

Axonometric
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Parallel projection

• Viewing rays are parallel rather than diverging
– like a perspective camera that’s far away
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Multiview orthographic
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Multiview orthographic

– projection plane parallel to a coordinate plane
– projection direction perpendicular to projection plane
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Off-axis parallel

axonometric: projection
plane perpendicular to
projection direction but not
parallel to coordinate planes

oblique: projection plane
parallel to a coordinate plane
but not perpendicular to
projection direction.
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Mathematics of projection

• Assume eye point at 0 and plane perpendicular to z
• Parallel case

– a simple projection: just toss out z

• Perspective case: scale diminishes with z
– and increases with d
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Parallel projection: orthographic

to implement orthographic, just toss out z:
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Parallel projection: oblique

to implement oblique, shear then toss out z:



© 2004 Steve Marschner • 17Cornell CS465 Fall 2004 • Lecture 10

View volumes

• The volume of space that ends up in the image

– P is the projection matrix; R is the image rectangle
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View volume: orthographic
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Perspective

one-point: projection
plane parallel to a
coordinate plane (to
two coordinate axes)

two-point: projection
plane parallel to one
coordinate axis

three-point:
projection plane not
parallel to a coordinate
axis [C
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Perspective distortions

• Lengths, length ratios
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Perspective projection

similar triangles:
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Homogeneous coordinates revisited

• Perspective requires division
– that is not part of affine transformations
– in affine, parallel lines stay parallel

• therefore not vanishing point
• therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords: projection
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Homogeneous coordinates revisited

• Introduced w = 1coordinate as a placeholder

– used as a convenience for unifying translation with linear

• Can also allow arbitrary w



© 2004 Steve Marschner • 24Cornell CS465 Fall 2004 • Lecture 10

Implications of w

• All scalar multiples of a 4-vector are equivalent
• When w is not zero, can divide by w

– therefore these points represent “normal” affine points

• When w is zero, it’s a point at infinity
– this is the point where parallel lines intersect
– can also think of it as the vanishing point

• Digression on projective space
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Perspective projection

to implement perspective, just move z to w:
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View volume: perspective
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View volume: perspective (clipped)
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Clipping planes

• In object-order systems we always use at least two
clipping planes that further constrain the view volume
– near plane: parallel to view plane; things between it and the

viewpoint will not be rendered
– far plane: also parallel; things behind it will not be rendered

• These planes are:
– partly to remove unnecessary stuff (e.g. behind the camera)
– but really to constrain the range of depths

(we’ll see why later)
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Viewing in 3D

• The application also chooses a camera pose (position
and orientation)
– this defines a coordinate frame for the camera
– transform geometry into that frame for rendering
– viewing matrix is the c.-to-b. transform of the camera frame
– the resulting coordinates are eye coordinates

– we can now assume that the camera is in standard pose
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Viewing transformation

the view matrix rewrites all coordinates in eye space
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Projection transformation

• With geometry in eye space, projection is simple:

• To enable hidden surface removal, want to keep a
pseudo-depth z’ that increases with z:

(recall this means
“is a scalar

multiple of”)
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Projection transformation

• Just like x’ and y’ run from –1 to 1, we’d like z’ to run
from –1 to 1

– solving for a and b leads to
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Projection transformation

• Thus the projection matrix for projection plane
distance d and near and far distances n and f is:
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Projection transformation

• Projection matrix maps from eye space to clip space

• In this space, the two-unit cube [–1, 1]3 contains
exactly what needs to be drawn

• It’s called “clip” coordinates because everything
outside of this box is clipped out of the view
– this can be done at this point, geometrically
– or it can be done implicitly later on by careful rasterization
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Viewport transformation

• A simple bookkeeping step to scale image
– clip volume was a simple cube
– rasterizer needs input in pixel coords
– therefore scale and translate to map the [–1, 1] box to the

desired rectangle in window coordinates, or screen space

• Also shift z’ to the desired range
– usually that range is [0, 1] so that it can be represented by a

fixed-point fraction

• Homogeneous divide usually happens here
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View frustum: orthographic
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View frustum: perspective
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Vertex processing: spaces

• Standard sequence of transforms


