Texture Mapping

CS 465 Lecture 13

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner « |

Texture mapping

* Obijects have properties that vary across the surface

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner ¢ 2

Texture Mapping

* So we make the shading
parameters vary across

the surface
g
Cornell CS465 Fall 2004 ¢ Lecture |3 © 2004 Steve Marschner « 3
Texture mapping
* Adds visual complexity; makes appealing images
T
&

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 4

Texture mapping

* Color is not the same everywhere on a surface
— one solution: multiple primitives

* Want a function that assigns a color to each point
— the surface is a 2D domain, so that is essentially an image
— can represent using any image representation

— raster texture images are very popular

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner * 5

A definition

Texture mapping: a technique of
defining surface properties
(especially shading parameters) in
such a way that they vary as a
function of position on the surface.

 This is very simple!

— but it produces complex-looking effects

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 6

Examples

* Wood gym floor with smooth finish
— diffuse color kp varies with position

— specular properties k¢, n are constant

* Glazed pot with finger prints
— diffuse and specular colors kD, kS are constant

— specular exponent n varies with position
* Adding dirt to painted surfaces
 Simulating stone, fabric, ...

— in many cases textures are used to approximate effects of
small-scale geometry

* they look flat but are a lot better than nothing

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner 7

Mapping textures to surfaces

* Usually the texture is an image (function of u, v)

— the big question of texture mapping: where on the surface
does the image go?

— obvious only for a flat rectangle the same shape as the image

— otherwise more interesting

 Note that 3D textures also exist
— texture is a function of (u, v, w)

— can just evaluate texture at 3D
surface point

— good for solid materials

[Wolfe / SG97 Slide set]

— often defined procedurally

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 8

Mapping textures to surfaces

* “Putting the image on the surface”

— this means we need a function f that tells where each point
on the image goes

— this looks a lot
like a parametric
surface function

— for parametric
surfaces you
get f for free

p 3D sSuwPuoe S

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner * 9

Texture coordinate functions

* Non-parametrically defined surfaces: more to do
— can’t assign texture coordinates as we generate the surface

— need to have the inverse of the function f

 Texture
coordinate fn. 4:S—= D

¢:S—>R2 (’ Il y
\

— foravtx. at p

get texture at 8]
*(P)
2D dexturt
domaria
p 3D surfuce S

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 10

Texture coordinate functions

* Mapping from S to D can be many-to-one
— that is, every surface point gets only one color assigned

— but it is OK (and in fact useful) for multiple surface points to
be mapped to the same texture point

* e.g. repeating tiles

e
-

¢ Can)JQ.

Many - Jo— ON-C} Cf/
for o hled jaxiace .

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner « ||

Texture coordinate functions

* Define texture image as a function
T:D—C
— where C is the set of colors for the diffuse component

* Diffuse color (for example) at point p is then

kp(p) = T(é(p))

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 12

Examples of coordinate functions

* A rectangle

— image can be mapped directly, unchanged

Cornell CS465 Fall 2004 * Lecture 13

© 2004 Steve Marschner « 13

Examples of coordinate functions

* For a sphere: latitude-longitude coordinates

— ¢ maps point to its latitude and longitude

90° N
— -] -

F: \/;:;0" N(;?}-—‘&y" = e

B g V»
El \L_ 8 - 30 - :3’
S BB B g %@mg :
g |= |= [= ML o
;I: % }; 3098 E? (M\ < 1
- [= L-‘“‘\g
,,3? 4{ 6018 d
B, e L e o ety m

-'=:_—"h_'=~é,e-£ 9048 2

Cornell CS465 Fall 2004 « Lecture 13

3 .08

© 2004 Steve Marschner « 14

Examples of coordinate functions

* A parametric surface (e.g. spline patch)

— surface parameterization gives mapping function directly
(well, the inverse of the parameterization)

Cornell CS465 Fall 2004 * Lecture 13

© 2004 Steve Marschner

Examples of coordinate functions

* For non-parametric surfaces it is trickier
— directly use world coordinates

* need to project one out

Cornell CS465 Fall 2004 « Lecture 13

© 2004 Steve Marschner

[Wolfe / SG97 Slide set]

15

[Wolfe / SG97 Slide set]

16

Texture in the graphics pipeline

* Texture coordinates are another attribute

— the application sets them to control where the texture goes
* Texturing as a fragment operation

— because the whole point is to vary quickly across the surface

* Interpolating coordinates across triangles

— to do texturing at fragment stage, we need interpolated (u, v)
coordinates at each fragment

— but—sad to say—you can’t interpolate u and v linearly in
screen space

* not only won’t you get 0.5 at the midpoint, you'll get
different answers depending on the view.

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner * 17

Texture coordinate interp example

®s="

 Solution: interpolate u/w, |/w and divide

Cornell CS465 Fall 2004 « Lecture 13 © 2004 Steve Marschner * 18

Texture mapping demo

Cornell CS465 Fall 2004 * Lecture 13 © 2004 Steve Marschner * 19

