
© 2004 Steve Marschner • 1Cornell CS465 Fall 2004 •!Lecture 13

Texture Mapping

CS 465 Lecture 13

© 2004 Steve Marschner • 2Cornell CS465 Fall 2004 •!Lecture 13

Texture mapping

• Objects have properties that vary across the surface

© 2004 Steve Marschner • 3Cornell CS465 Fall 2004 •!Lecture 13

Texture Mapping

• So we make the shading
parameters vary across
the surface

[F
o
le

y
et

 a
l.

/
P
er

lin
]

© 2004 Steve Marschner • 4Cornell CS465 Fall 2004 •!Lecture 13

Texture mapping

• Adds visual complexity; makes appealing images
[P

ix
ar

 /
 T

oy
 S

to
ry

]

© 2004 Steve Marschner • 5Cornell CS465 Fall 2004 •!Lecture 13

Texture mapping

• Color is not the same everywhere on a surface

– one solution: multiple primitives

• Want a function that assigns a color to each point

– the surface is a 2D domain, so that is essentially an image

– can represent using any image representation

– raster texture images are very popular

© 2004 Steve Marschner • 6Cornell CS465 Fall 2004 •!Lecture 13

Texture mapping: a technique of
defining surface properties
(especially shading parameters) in
such a way that they vary as a
function of position on the surface.

A definition

• This is very simple!

– but it produces complex-looking effects

© 2004 Steve Marschner • 7Cornell CS465 Fall 2004 •!Lecture 13

Examples

• Wood gym floor with smooth finish

– diffuse color kD varies with position

– specular properties kS, n are constant

• Glazed pot with finger prints

– diffuse and specular colors kD, kS are constant

– specular exponent n varies with position

• Adding dirt to painted surfaces

• Simulating stone, fabric, …

– in many cases textures are used to approximate effects of
small-scale geometry

• they look flat but are a lot better than nothing

© 2004 Steve Marschner • 8Cornell CS465 Fall 2004 •!Lecture 13

Mapping textures to surfaces

• Usually the texture is an image (function of u, v)

– the big question of texture mapping: where on the surface
does the image go?

– obvious only for a flat rectangle the same shape as the image

– otherwise more interesting

• Note that 3D textures also exist

– texture is a function of (u, v, w)

– can just evaluate texture at 3D
surface point

– good for solid materials

– often defined procedurally

[W
o
lfe

 /
 S

G
9
7
 S

lid
e

se
t]

© 2004 Steve Marschner • 9Cornell CS465 Fall 2004 •!Lecture 13

Mapping textures to surfaces

• “Putting the image on the surface”

– this means we need a function f that tells where each point
on the image goes

– this looks a lot
like a parametric
surface function

– for parametric
surfaces you
get f for free

© 2004 Steve Marschner • 10Cornell CS465 Fall 2004 •!Lecture 13

Texture coordinate functions

• Non-parametrically defined surfaces: more to do

– can’t assign texture coordinates as we generate the surface

– need to have the inverse of the function f

• Texture
coordinate fn.

– for a vtx. at p
get texture at
!(p)

© 2004 Steve Marschner • 11Cornell CS465 Fall 2004 •!Lecture 13

Texture coordinate functions

• Mapping from S to D can be many-to-one

– that is, every surface point gets only one color assigned

– but it is OK (and in fact useful) for multiple surface points to
be mapped to the same texture point

• e.g. repeating tiles

© 2004 Steve Marschner • 12Cornell CS465 Fall 2004 •!Lecture 13

Texture coordinate functions

• Define texture image as a function

– where C is the set of colors for the diffuse component

• Diffuse color (for example) at point p is then

© 2004 Steve Marschner • 13Cornell CS465 Fall 2004 •!Lecture 13

Examples of coordinate functions

• A rectangle

– image can be mapped directly, unchanged

© 2004 Steve Marschner • 14Cornell CS465 Fall 2004 •!Lecture 13

Examples of coordinate functions

• For a sphere: latitude-longitude coordinates
– ! maps point to its latitude and longitude

[m
ap

: P
eter H

. D
an

a]

© 2004 Steve Marschner • 15Cornell CS465 Fall 2004 •!Lecture 13

Examples of coordinate functions

• A parametric surface (e.g. spline patch)

– surface parameterization gives mapping function directly
(well, the inverse of the parameterization)

[W
o
lfe

 /
 S

G
9
7
 S

lid
e

se
t]

© 2004 Steve Marschner • 16Cornell CS465 Fall 2004 •!Lecture 13

Examples of coordinate functions

• For non-parametric surfaces it is trickier

– directly use world coordinates

• need to project one out

[W
o
lfe

 /
 S

G
9
7
 S

lid
e

se
t]

© 2004 Steve Marschner • 17Cornell CS465 Fall 2004 •!Lecture 13

Texture in the graphics pipeline

• Texture coordinates are another attribute

– the application sets them to control where the texture goes

• Texturing as a fragment operation

– because the whole point is to vary quickly across the surface

• Interpolating coordinates across triangles

– to do texturing at fragment stage, we need interpolated (u, v)
coordinates at each fragment

– but—sad to say—you can’t interpolate u and v linearly in
screen space

• not only won’t you get 0.5 at the midpoint, you’ll get
different answers depending on the view.

© 2004 Steve Marschner • 18Cornell CS465 Fall 2004 •!Lecture 13

Texture coordinate interp example

• Solution: interpolate u/w, 1/w and divide

© 2004 Steve Marschner • 19Cornell CS465 Fall 2004 •!Lecture 13

Texture mapping demo

