Curved surfaces

CS 465 Lecture 16
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From curves to surfaces

* So far have discussed spline curves in 2D

— it turns out that this already provides of the mathematical
machinery for several ways of building curved surfaces

* Building surfaces from 2D curves

— extrusions and surfaces of revolution

* Building surfaces from 2D and 3D curves

— generalized swept surfaces

Building surfaces from spline patches

— generalizing spline curves to spline patches

Also to think about: generating triangles
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Extrusions

* Given a spline curve C € R?, define S € R® by

S=C xla,b]
* This produces a “tube” with the given cross section
— Circle: cylinder; “L”: shelf bracket; “I”: | beam

* |t is parameterized by the spline t and the interval [aq, b]
s(t,5) = [ca(t), cy(t), s]"
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Surfaces of revolution
* Take a 2D curve and spin it Rotation
around an axis Pie P2

* Given curve ¢(t) in the plane, Q

the surface is defined easily
in cylindrical coordinates:

s(t,s) = (r, ¢, 2) = (ca(?), s, ¢y (1)) :
— the torus is an example P(u, v)

in which the curve ¢
is a circle ®

[Hearn & Baker]

(b)
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Swept surfaces

* Surface defined by a cross section moving along a spine

* Simple version: a single 3D curve for spine and a single
2D curve for the cross section
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More general surfaces

e Extrusions are fine but lack control

* In sketching, it's common to draw several cross
sections rather than just one

— the understanding is that there is a smooth surface that
interpolates the cross sections

* So suppose we have several cross sections given as
splines: how to define parametric surface?

— know t cross section at, say,s =0, [, 2
— define intermediate sections by interpolating control points

— use more splines to interpolate smoothly!
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Splines within splines

* For every s the t cross-section will be defined by a
spline—say it’s a cubic (4-point) Bezier segment

4
c(t) = Z pibi(t) (a single curve)
1=1

curve a function of s)

!
S(S t) = Z pi(s)bi(t) (a surface defined by making the
1=1

* now suppose we choose the same type of spline to
represent the functions p(s)
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Splines within splines

* Using a spline to define the control points of a spline

4
s(s,t) =¥ pi(s)bi(t)  (from prev.slide)
1=1
4
pi(s) = Z Pij bj(s) (each p; is a spline in s)
j=1
4
5(37 t) — Z pijbi (t)bj(s) (substitute)
i j=1

— note that you can’t tell which spline is on the outside any
more: s and t are not different
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From curves to surface patches

* Curve was sum of weighted | D basis functions

* Surface is sum of weighted 2D basis functions
— construct them as separable products of ID fns.
— choice of different splines
* spline type
* order

* closed/open (B-spline)
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Separable product construction
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Bilinear patch

* Simplest case: 4 points, cross product of two linear
segments

— basis function is a 3D tent
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Bicubic Bézier patch

* Cross product of two cubic Bezier segments

[Foley et al.]

[Hearn & Baker]
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— properties that carry over N
* interpolation at corners, edges (b)
* tangency at corners, edges

* convex hull
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Biquadratic Bezier patch

* Cross product of quadratic Bezier curves
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3x5 Beézier patch

* Cross product of quadratic and quartic Beziers

[Rogers]
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Cylindrical B-spline surfaces

* Cross product of closed and open cubic B-splines
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Joining spline patches

* Example: Bézier patches
— conditions for CI are similar to curve

— conditions for G| allow any coplanar structure...

[Foley et al.]
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Joining multiple patches

* Joining a 4-way corner is fairly simple
— constraints from multiple joins are compatible
— this makes patches tileable into large sheets

* Joining at irregular corners is quite messy
— constraints become contradictory
* e.g. at 3-way corner

— this is problematic for building anything with topology
different from plane, cylinder, or torus

* it is possible, though—just messy
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Approximating spline surfaces

* Similarly to curves, approximate with simple primitives
— in surface case, triangles or quads
— quads widely used because they fit in parameter space

 generally eventually rendered as pairs of triangles

* adaptive subdivision

— basic approach: recursively test flatness

* if the patch is not flat enough, subdivide into four using
curve subdivision twice, and recursively process each
piece

— as with curves, convex hull property is useful for termination
testing (and is inherited from the curves)
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Approximating spline surfaces

* With adaptive subdivision, must take care with cracks

— (at the boundaries between degrees of subdivision)
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