
Polygon Lists &
3-D File Formats

Glenn G. Chappell
CHAPPELLG@member.ams.org
U. of Alaska Fairbanks

CS 481/681 Lecture Notes
Monday, February 18, 2002

18 Feb 2002 CS 481/681 2

Review:
Outlining Polygons
  Sometimes we wish to emphasize the angular,

gem-like character of surfaces.
  One way to do this is to outline each polygon.
  How is this done?

  In OpenGL, we can draw a surface twice, once with
polygons filled, and again with polygons outlined.

  Use glPolygonMode to set the polygon rasterization
mode.

  How can we avoid stitching errors?
  There is no perfect solution to this problem.
  Using a polygon offset generally produces good results.
  The relevant OpenGL command is glPolygonOffset.

18 Feb 2002 CS 481/681 3

Review:
Describing Objects [1/2]
  We usually describe 3-D objects by describing their

surfaces.
  Usually, but not always; true 3-D descriptions are known as

volume data.
  Object descriptions that are transmitted from one program

to another are usually in files.
  We want files to be compact, but also contain all necessary

information.
  We may want our file to be readable by commercial graphics

programs.
  Some file formats are much easier to handle than others.

  Some object description methods allow us to draw the
object in detail, as smooth as we like; others do not.

18 Feb 2002 CS 481/681 4

Review:
Describing Objects [2/2]
  Some general categories of ways to

describe surfaces:
  Via an explicit mathematical formula
  List of polygons
  Building out of basic shapes

•  Sphere, cylinders, cones, cubes, etc.
  Splines
  Isosurface (implicit description)
  Elevation data

• Used for terrain

18 Feb 2002 CS 481/681 5

Review:
Surface from a Formula
  Mathematical formulas describe surfaces implicitly or explicitly.

  An implicit description:

  An explicit description:

  Explicit descriptions have explicit formulae for x, y, and z.
  Explicit descriptions are also called parametrizations.

  Above, variables a and b are the parameters.
  Explicit descriptions are generally much easier to handle graphically

than implicit descriptions.
  To draw a parametrized surface, we need:

  Code to draw a square (0 to 1 in both coordinates) as a fine mesh of triangles.
  Code to compute the coordinates of points in the parametrized surface, as well

as the associated normal vectors.
  Then the points and normals in the square are replaced with those for the

surface.

() ().cos143sin7 xyzzyx =+

() .;sincos;3 2abzbaaybax =++=+=

18 Feb 2002 CS 481/681 6

Polygon Lists
  Regardless of how a surface is initially described, to draw it we

generally convert it to a list of polygons.
  Exception: Ray tracing.

  Thus, it is common for surfaces to be described as lists of
polygons.

  Pros:
  Easy to draw.
  Portable; lots of programs can handle lists of polygons.

  Cons:
  It is impossible to draw a surface in greater detail when you only

know the polygons.
  Files tend to be large.

  Surface descriptions are often placed in files. Next we discuss 3-
D file formats.

18 Feb 2002 CS 481/681 7

File Formats:
General Issues
  When designing any file format, the following

issues need to be dealt with.
  How will files of this type be identified?
  Will other people/programs be using this format?
  Might this format be extended in the future?

•  If so, will programs need to be able to read files that
contain features designed after the programs were
written?

  Should the format be readable/editable using a
standard text editor?

  Is file size going to be a major issue?
  Is there an already existing type that is good enough?

18 Feb 2002 CS 481/681 8

File Formats:
3-D Surface Issues [1/3]
  There are two basic ways to specify a list of polygons.

  The file can give a list of vertices; then polygons are specified
as having vertices from this list.

  The file can simply list the polygons, with the vertex
coordinates being listed with the polygons.

  An advantage of the former approach is that a program
can tell how the polygons in the surface fit together,
whether there are any holes in the surface, etc.
  We say the program can determine the topology of the

surface.
  Some surfaces are specified internally as lists of unrelated

polygons. In this case, using the former approach may be
inconvenient.

  A good solution is to allow both methods.

18 Feb 2002 CS 481/681 9

File Formats:
3-D Surface Issues [2/3]
  When specifying a surface, there is always the question of

how to deal with normal vectors. There are three
approaches:
  We can specify a surface without normals.
  We can specify a normal vector for each vertex (“vertex

normals”).
  We can specify a normal for each polygon (“facet normals”).

  Note: Facet normals are easy to compute from the list of
vertices of a polygon. Good vertex normals may be harder
to compute.

  A good solution is to allow (but not require) vertex
normals.

18 Feb 2002 CS 481/681 10

File Formats:
3-D Surface Issues [3/3]
  A third issue is what sort of polygons to allow:

  The format may allow general polygons, with any number of vertices.
  The format may allow only triangles.

  Allowing only triangles can make reading and processing a file
simpler.

  However, allowing more general polygons makes file generation
easier; further, it is not hard to split up a polygon into triangles,
especially if it is required than all polygons be convex.

  Allowing arbitrary (convex?) polygons is generally the best
solution, since:
  Many surfaces are naturally described using quadrilaterals or other

non-triangle polygons.
  Allowing general polygons simply means that a program may need to

partition polygons into triangles before processing them; this adds
little overhead.

18 Feb 2002 CS 481/681 11

A/W .obj Format:
Introduction
  As an example of a 3-D graphical format, we will discuss

the Alias/Wavefront .obj format.
  This format was developed by (you guessed it) Alias/

Wavefront for its Advanced Visualizer.
  The format can also be read and written by Alias/Wavefront’s

Maya, the primary software used in ART 472 (Visualization
and Animation), as well as many other professional 3-D
graphics packages.

  A/W .obj files are identified by their suffix, which is (again,
you guessed it) “.obj”.

  The files are human-readable text.
  As with many 3-D graphical formats, there is an associated

binary format, which we will not be discussing.

18 Feb 2002 CS 481/681 12

A/W .obj Format:
Basic Structure
  A/W .obj files are composed of lines of text.

  Blank lines are ignored.
  Other lines begin with a code telling what sort of data is

on that line.
  There are many codes; we will discuss the

following:
  # comment (line is skipped)
  v vertex coordinates
  vn vertex normal vector
  f face

  A few short sample files are on the next few
slides; more will be on the web page.

18 Feb 2002 CS 481/681 13

A/W .obj Format:
Example Files [1/3]
  Here is a complete A/W .obj file. Italic comments are not

part of the file.

This file contains a single square.
There are no normals.
Here are the vertices:
v 0 0 0 This is vertex number 1.
v 1 0 0
v 1 1 0
v 0 1 0
Here is the square itself:
f 1 2 3 4 These reference the “v” list, above.

18 Feb 2002 CS 481/681 14

A/W .obj Format:
Example Files [2/3]
  Here is another .obj file. This one contains normals.

  Before the two slashes is the vertex (“v”) number.
  After the two slashes is the normal (“vn”) number.

v 0 0 0
v 1 0 0
v 1 1 0
v 0 1 0
vn 0 0 1 This is normal vector number 1.
Two triangles
f 1//1 2//1 4//1 These reference vn 1, above.
f 2//1 3//1 4//1

18 Feb 2002 CS 481/681 15

A/W .obj Format:
Example Files [3/3]
  Yet another .obj file. This has separate vertex and normal

lists for each face.

v 0 0 0
v 1 0 0
v 0 1 0
vn 0 0 1
f -3//-1 -2//-1 -3//-1 -1 = most recent
v 1 0 0 -2 is the one before that, etc.
v 1 1 0
v 0 1 0
vn 0 0 1
f -3//-1 -2//-1 -3//-1

