Sampling and reconstruction

CS 465 Lecture 5

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ |

Sampled representations

* How to store and compute with continuous functions?

 Common scheme for representation: samples

— write down the function’s values at many points

W

l Sampling

[FvDFH fig.14.14b / Wolberg]

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 2

Reconstruction

* Making samples back into a continuous function

— for output (need realizable method)
— for analysis or processing (need mathematical method)

— amounts to “guessing” what the function did in between

l Reconstruction

mew

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 3

[FvDFH fig.14.14b / Wolberg]

Filtering

* Processing done on a function

— can be executed in continuous form (e.g. analog circuit)

— but can also be executed using sampled representation

* Simple example: smoothing by averaging

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 4

Roots of sampling

* Nyquist 1928; Shannon 1949

— famous results in information theory
* 1940s: first practical uses in telecommunications
* [960s: first digital audio systems

* [970s: commercialization of digital audio

* 1982: introduction of the Compact Disc

— the first high-profile consumer application

* This is why all the terminology has a communications
or audio “flavor”

— early applications are |D; for us 2D (images) is important

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 5

Sampling in digital audio

* Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound again

— how can we be sure we are filling in the gaps correctly?

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 6

Undersampling

* What if we “missed” things between the samples?

* Simple example: undersampling a sine wave
— unsurprising result: information is lost
— surprising result: indistinguishable from lower frequency
— also was always indistinguishable from higher frequencies

— dliasing: signals “traveling in disguise” as other frequencies

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 7

Preventing aliasing

* Introduce lowpass filters:

— remove high frequencies leaving only safe, low frequencies

— choose lowest frequency in reconstruction (disambiguate)

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner * 8

Linear filtering: a key idea

* Transformations on signals; e.g.:
— bass/treble controls on stereo
— blurring/sharpening operations in image editing
— smoothing/noise reduction in tracking
* Key properties
— linearity: filter(f + g) = filter(f) + filter(g)
— shift invariance: behavior invariant to shifting the input
* delaying an audio signal

* sliding an image around

* Can be modeled mathematically by convolution

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 9

Convolution warm-up

* basic idea: define a new function by averaging over a
sliding window

* a simple example to start off: smoothing

il

Convolution warm-up

* Same moving average operation, expressed
mathematically:

1 k+r
blk| = k
[] 2T+1zzk:ra[]

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ | |

Discrete convolution

* Simple averaging:
1 k+r
blk] = k
H =gt 2 ol

— every sample gets the same weight
* Convolution: same idea but with weighted average
blk] =) clila[k — i
i
— each sample gets its own weight (normally zero far away)
* Sequence of weights c; is called a filter
— support, symmetry

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 12

Discrete convolution

e Notation: b=cxa

* Convolution is a multiplication-like operation
— commutative axb=0bx*a
— associative ax (bxc) = (axb) xc
— distributes over addition ax (b+c¢) =axb+ axc
— scalars factor out @a*b=ax*ab=a(axb)

— identity: unit impulsee =1...,0,0, 1,0, 0, ...]
axe=a

* Conceptually no distinction between filter and signal

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 13

Convolution and filtering

* Can express sliding average as convolution with a box
filter

e ¢ =[..0 11,1, 1,1,0,..]

il
.
T

Convolution and filtering

* Convolution applies with any sequence of weights

* Example: bell curve (gaussian-like) [..., |, 4, 6,4, 1, ...]

Discrete filtering in 2D

* Same equation, one more index

bk, 1] = Zc[z’,j]a[k — i, — J]

— now the filter is a rectangle you slide around over a grid of
numbers

 Commonly applied to images
— blurring (using box, using gaussian, ...)
— sharpening (impulse minus blur)

— usefulness of associativity

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 16

Optimization: separable filters

* basic alg. is O(r?): large filters get expensive fast!

* definition: h(x,y) is separable if it can be written as:
hlz,y] = he|z]hyly]

— this is a useful property for filters because it allows factoring:

glz,y] = Zth il flz =1,y — J]
:Zth i hyl7) fle — 3,y — J]

=D _hali] | 3 ylilflz =i,y = J]

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 18

Separable filtering

hz,y] = halz]hy[y]

1141641 010101010 010111010
4116|24|16(4 010101010 010141010
6 [24|36(24| 6 114641 0{0]|6]0]0
4116|24|16| 4 010101010 010141010
114|6(4]|1 010101010 0{0|1]101]0

second, convolve with this |

— first, convolve with this —

> _halil | 3 hylilflz =iy = J]

1

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 19

Continuous convolution: warm-up

* Can apply sliding-window average to a continuous
function just as well
— output is continuous

— integration replaces summation

3\ ,!" "l N\ -
\ A\ /_\/. | \’- \ /\/,.f\f b A
|/ LT ! », l |'| I| /
||L/,f 'vl \—\\ '; %ﬁ/ﬂ.\' {_’\}’p / v v

original

\/_, /\\/J /"‘f\ﬁ\

smoothed

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 20

Continuous convolution

* Sliding average expressed mathematically:

r+r
s@) =5 [0

—Tr

— note difference in normalization (only for box)

* Convolution just adds weights

||

o0 I/ \"\/\\.\ \/\\ / /_\}'I 'll| .
o@)= [h(Of - F Wy
0o
— weighting is now by a function A
— weighted integral is like weighted average
g g g ge ! ~

— again bounds are set by support of h(x)

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 21

One more convolution

e Continuous—discrete convolution

g(z,y) = Z cli, j1f (x — i,y — §)

— used for reconstruction and resampling

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 22

Continuous-discrete convolution

samples ?
L] ° [
] . L 4
L] ’ T
reconstructed

%

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 23

Resampling

* Changing the sample rate

— in images, this is enlarging and reducing
* Creating more samples:

— increasing the sample rate

— “upsampling”

— “enlarging”
* Ending up with fewer samples:

— decreasing the sample rate

— “downsampling”

— “reducing”

Cornell CS465 Fall 2004 « Lecture 5

© 2004 Steve Marschner * 24

Resampling

e Reconstruction creates a continuous function

— forget its origins, go ahead and sample it

samples ?

| I
resampled .J
signal

T

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 25

Cont.—disc. convolution in 2D

* same convolution—just two variables now
=) h@—ky =Sk,
k,l

— loop over nearby pixels,

average using filter weight

— looks like convolution filter, // \
but offsets are not integers
and filter is continuous

— remember placement of filter
relative to grid is variable \ /

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 26

o

e & v —

Separable filters for resampling

* just as in filtering, separable filters are useful

— separability in this context is a statement about a continuous
filter, rather than a discrete one:

h(@,y) = ha(x)hy(y)

* resample in two passes, one resampling each row and
one resampling each column

* intermediate storage required: product of one
dimension of src. and the other dimension of dest.

* same yucky details about boundary conditions

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 27

[Philip Greenspun]

two-stage resampling using a
separable filter

Cornell CS465 Fall 2004 ¢ Lecture 5 © 2004 Steve Marschner ¢ 28

A gallery of filters

e Box filter
e Mitchell-Netravali cubic

— Good for image upsampling

— Simple and cheap

e Tent filter

— Linear interpolation

* Gaussian filter

— Very smooth antialiasing filter
* B-spline cubic

— Very smooth

e Catmull-rom cubic

— interpolating

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 29

Properties of filters

* Degree of continuity
* Impulse response
* Interpolating or no

* Ringing, or overshoot

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 30

Yucky details

* What about near the edge!?

— the filter window falls off the edge of the image

— need to extrapolate > - F
— methods: '
* clip filter (black)

* wrap around

* copy edge

reflect across edge

vary filter near edge

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 31

Reducing and enlarging

* very common operation

— devices have differing resolutions
— applications have different memory/quality tradeoffs

* also very commonly done poorly

* simple approach: drop/replicate pixels

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 32

i i Philip G
1000 P|Xe| width [Philip Greenspun]
Cornell CS465 Fall 2004 ¢ Lecture 5 © 2004 Steve Marschner * 33

[Philip Greenspun]

by dropping pixels gaussian filter

250 pixel width
Cornell CS465 Fall 2004 ¢ Lecture 5 © 2004 Steve Marschner ¢ 34

[Philip Greenspun]

box reconstruction filter bicubic reconstruction filter

4000 pixel width
Cornell CS465 Fall 2004 ¢ Lecture 5 © 2004 Steve Marschner ¢ 35

Types of artifacts

* garden variety

— what we saw in this natural image

— fine features become jagged or sparkle

* moire patterns

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 36

[Hearn & Baker cover]

600ppi scan of a color halftone image

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 37

7

[Hearn & Baker cover]

by dropping pixels gaussian filter

downsampling a high resolution scan

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 38

Types of artifacts

* garden variety
— what we saw in this natural image

— fine features become jagged or sparkle

* moire patterns
— caused by repetitive patterns in input

— produce low-frequency artifacts; highly visible

* these artifacts are called aliasing
— why is beyond our scope for now

* find out in CS467 or a signal processing class

Cornell CS465 Fall 2004 « Lecture 5 © 2004 Steve Marschner ¢ 39

