CPS216 Advanced Database Systems (Data-Intensive Computing Systems) - Fall 2009
 Assignment 1

- Total points $=80$. Due date: Friday, Sept. 18, 2009 (5.00 PM).
- Submission: In class, or email solutions in pdf or plain text to shivnath@cs.duke.edu. You can also drop off the solutions at Shivnath's office: D338 LSRC.
- Do not forget to indicate your name on your submission.
- State all assumptions. For questions where descriptive solutions are required, you will be graded both on the correctness and clarity of your reasoning.
- Email questions to shivnath@cs.duke.edu.

Question 1

$$
\text { Points } 20=4+4+6+6
$$

Give two logical plans and two physical plans for the following SQL query.

```
Select R.A, T.B
From R, S, T
Where R.A = S.A and R.B = T.B
```

Let the two physical plans you give be denoted $P l a n_{1}$ and $P l a n_{2}$. Describe a scenario where $P l a n_{1}$ is better than Plan_{2}, and another where Plan $_{2}$ is better than Plan $_{1}$. For this question assume that the cost measure is the number of getNext() calls. (A complete example scenario may need to specify sizes of the tables, selectivity of joins, etc.)

Question 2
 Points $20=6+6+8$

Let $R_{1}(A, B)$ and $R_{2}(B, C)$ be two tables of data.

1. Suppose, neither R_{1} nor R_{2} has duplicate tuples. (That is, there is no pair of distinct tuples $r \in R_{1}$ and $s \in R_{1}$ such that $r . A=s . A$ and $r . B=s . B$; similarly for R_{2}.) What is the necessary and sufficient condition for the following equivalence to hold: $\sigma_{P_{1} \vee P_{2}}\left(R_{1} \bowtie R_{2}\right)$ $=\left(\sigma_{P_{1}} R_{1} \bowtie R_{2}\right) \bigcup_{B}\left(R_{1} \bowtie \sigma_{P_{2}} R_{2}\right)$? Here, P_{1} is a predicate that involves attributes in R_{1} only, and P_{2} is a predicate that involves attributes in R_{2} only. \bigcup_{B} denotes bag union (see Figure 1 for an illustration of bag and set unions.) State your condition as an expression in relational algebra. You may use ϕ to denote an empty set of tuples (i.e., a null set).
2. How does your answer to (1) change if R_{1} and R_{2} can have duplicate tuples in them? (That is, now there can be pairs of distinct tuples $r \in R_{1}$ and $s \in R_{1}$ such that $r . A=s . A$ and $r . B=s . B$; similarly for R_{2}.)
3. Does the following condition hold if R_{1} and R_{2} can have duplicate tuples in them: $\sigma_{P_{1} \vee P_{2}}\left(R_{1} \bowtie\right.$ $\left.R_{2}\right)=\left(\sigma_{P_{1}} R_{1} \bowtie R_{2}\right) \bigcup_{S}\left(R_{1} \bowtie \sigma_{P_{2}} R_{2}\right)$? \bigcup_{S} denotes set union (also called duplicateeliminating union; see Figure 1.) If not, can you suggest a modification to right hand side of this condition so that the new condition holds? You can express your new condition in relational algebra or describe it in English.

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline
\end{array} \mathrm{U}_{\mathrm{B}} \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 3 & \mathrm{c} \\
\hline 1 & \mathrm{a} \\
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline
\end{array} \mathrm{U}_{\mathrm{S}} \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array}=\begin{array}{|c|c|}
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array} \mathrm{U}_{\mathrm{B}} \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline 1 & \mathrm{a} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array} \mathrm{U}_{\mathrm{S}} \begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & \mathrm{a} \\
\hline 2 & \mathrm{~b} \\
\hline 3 & \mathrm{c} \\
\hline
\end{array}
\end{aligned}
$$

Figure 1: Examples to illustrate Bag Union $\left(\bigcup_{B}\right)$ and Set Union $\left(\bigcup_{S}\right)$

Question 3

Points $20=10+10$
Figures 2(a)-(c) show three logical plans for the following SQL query over tables $R(A, B)$ and $S(A, C)$.

```
Select Distinct R.A
From R, S
Where R.A = S.A
```

Note that "Select Distinct" in SQL represents a duplicate-eliminating projection. The logical operator $\pi_{R . A}$ in Figure 2 represents a duplicate-eliminating projection of attribute $R . A, \pi_{R . A}^{p}$ represents a duplicate-preserving projection of attribute $R . A$, and \bowtie represents a natural join.

If we have a table with $R(A, B)$ tuples $\{\{1, a\},\{1, b\},\{2, c\},\{3, d\},\{4, e\},\{4, f\}\}$, then a duplicatepreserving projection on R. A will return $\{1,1,2,3,4,4\}$, while a duplicate-eliminating projection on R. A will return $\{1,2,3,4\}$.

Assume that, in the general case, both R and S can contain duplicate tuples. Answer the following:

1. Is the logical plan in Figure 2(a) equivalent to the logical plan in Figure 2(b)? If not, what properties should the tables satisfy such that these plans are equivalent?
2. Is the logical plan in Figure 2(a) equivalent to the logical plan in Figure 2(c)? If not, what properties should the tables satisfy such that these plans are equivalent?

Question 4

Points $20=8+12$
Figure 3 shows a physical execution plan for a query that joins four tables $R(A), S(A), T(B)$, and $U(B)$. Also shown are the tuples in the respective tables. TNLJ denotes the tuple nested loop

Figure 2: Logical execution plans for $\pi_{A}(R(A, B) \bowtie S(A, C))$
join that we discussed in class. Also, TableScan denotes a full scan of the table as we discussed in class.

1. Count the number of getNext() calls that the plan in Figure 3 will make. EOT (End-Of-Tuple) calls should be included in your answer.
2. Give the execution plan that will generate the minimum number of getNext() calls for this query. The plan you give can include TNLJ and TableScan operators only.

Figure 3: Physical execution plan for joining R, S, T, and U

