CPS216: Advanced Database Systems

Notes 02:Query Processing (Overview)

Shivnath Babu

Query Processing

Declarative SQL Query \rightarrow Query Plan

NOTE: You will not be tested on how well you know SQL. Understanding the SQL introduced in class will be sufficient (a primer follows). SQL is described in Chapter 6, GMUW.

Focus: Relational System (i.e., data is organized as tables, or relations)

SQL Primer

We will focus on SPJ, or Select-Project-Join Queries
Select <attribute list>
From <relation list>
Where <condition list>
Example Filter Query over R(A,B,C):
Select B
From R
Where R.A = "c" \wedge R.C > 10

SQL Primer (contd.)

We will focus on SPJ, or Select-Project-Join-Queries
Select <attribute list>
From <relation list>
Where <condition list>
Example Join Query over R(A,B,C) and S(C,D,E):
Select B, D
From R, S
Where R.A $=$ " c " $\wedge S . E=2 \wedge R . C=S . C$

Select B, D
From R,S
Where R.A = "c" \wedge

Answer	B	D
2	x	

$S . E=2 \wedge$ R.C=S.C

- How do we execute this query?

Select B,D
From R,S
Where R.A $=$ "c" $\wedge S . E=2 \wedge$
R.C=S.C

One idea - Select tuples

- Do projection

R X S	R.A	R.B	R.C	S.C	S.D	S.E
Select B, D	a	1	10	10	X	2
From R,S						
Where R.A = "c"	a	1	10	20	y	2
$\begin{aligned} & \wedge \text { S.E }=2 \wedge \\ & \text { R.C=S.C } \end{aligned}$						
Bingo! \qquad		2	10	10	x	(2)

Relational Algebra - can be used to describe plans
 Ex: Plan I

Relational Algebra Primer (Chapter 5, GMUW)

Select: $\sigma_{\text {R.A }}={ }^{\text {"c" }} \times$ R.C=10
Project: $\Pi_{B, D}$
Cartesian Product: R XS
Natural Join: $R \bowtie S$

Relational Algebra - can be used to describe plans
 \section*{Ex: Plan I}

OR: $\Pi_{B, D}\left[\sigma_{R . A=" C " \wedge ~} . E=2 \wedge R . C=s . C(R X S)\right]$

Another idea:

R			$\sigma(\mathrm{R}) \quad \sigma(\mathrm{S})$						S			
A	B	C							C			E
a	1	10	A	A	C	C			10	\times		2
b	1	20	c	2	10	10	x		20		y 2	2
c	2	10					y 2		30	z	z	2
d	2	35							40	x	x 1	
e	3	45							50	y	y	

Select B, D
From R,S
Where R.A = "c" \wedge
S.E $=2 \wedge$ R.C=S.C

Plan III

Use R.A and S.C Indexes
(1) Use R.A index to select R tuples with R.A = "c"
(2) For each R.C value found, use S.C index to find matching tuples
(3) Eliminate S tuples $S . E \neq 2$
(4) Join matching R,S tuples, project
B, D attributes, and place in result

	R				S	
A	B	C	I 1 - $\longrightarrow-\mathrm{I}_{2}$	C	D	E
a		10	1	10		2
b		20	<c,2,10> <10, , 2>	20		2
c		10	check $=2$?	30		2
d		35	output: <2, x>	40		1
e		45		50		3
		15				

Overview of Query Processing

Example Query

Select B,D
From R,S
Where R.A = "c" ^ R.C=S.C

Example: Parse Tree

Along with Parsing ...

- Semantic checks
- Do the projected attributes exist in the relations in the From clause?
- Ambiguous attributes?
- Type checking, ex: R.A > 17.5
- Expand views

Initial Logical Plan

Select B,D
From R,S
$\sigma_{R . A}=" c " \wedge R . C=S . C$
Where R.A = "c" ^
R.C=S.C

Relational Algebra: $\Pi_{B, D}\left[\sigma_{R . A=" c " \wedge R . C=s . C}(R X S)\right]$

Apply Rewrite Rule (1)

Apply Rewrite Rule (2)

Apply Rewrite Rule (3)

