
CPS216: Advanced Database
Systems

Notes 03:Query Processing Notes 03:Query Processing
(Overview, contd.)

Shivnath Babu

parse

Query rewriting

SQL query

parse tree

logical query planstatistics
Query
Optimization

Overview of
Query

Processing

Physical plan generation

execute

result

physical query plan

Optimization

Query
Execution

parse

Query rewriting

SQL query

parse tree

logical query planstatistics

Initial logical plan

Logical plan

Rewrite rules

Physical plan generation

execute

result

physical query plan

“Best” logical plan

Query Rewriting

πB,D

σR.A = “c” Λ R.C = S.C

X

πB,D

σR.A = “c”

σR.C = S.C

X

R S
X

R S

We will revisit it towards the end of this lecture

parse

Query rewriting

SQL query

parse tree

Best logical query planstatistics

Physical plan generation

execute

result

Best physical query plan

Physical Plan Generation

πB,D

σ
Natural join Hash join

Project

σR.A = “c”

R

S

Best logical plan
R S

Index scan Table scan

parse

Query rewriting

SQL query

parse tree

Best logical query planstatistics

Enumerate possible
physical plans

Find the cost of

Physical plan generation

execute

result

Best physical query plan

Find the cost of
each plan

Pick plan with
minimum cost

Physical Plan Generation

Logical Query Plan

P1 P2 …. Pn
Physical

plans

C1 C2 …. Cn

Pick minimum cost one

plans

Costs

Plans for Query Execution
• Roadmap

– Path of a SQL query
– Operator trees
– Physical Vs Logical plans
– Plumbing: Materialization Vs pipelining– Plumbing: Materialization Vs pipelining

Modern DBMS Architecture
Applications

Parser

Query Optimizer
Logical query plan

Physical query plan

SQL
DBMS

Disk(s)

OS

Query Executor

Storage Manager

Physical query plan

Access method API calls

File system API callsStorage system API calls

Logical Plans Vs. Physical Plans

πB,D

σ
Natural join Hash join

Project

σR.A = “c”

R

S

Best logical plan
R S

Index scan Table scan

πB,D

σR.A = “c” S

Operator Plumbing

R

• Materialization: output of one operator written to
disk, next operator reads from the disk

• Pipelining: output of one operator directly fed to
next operator

πB,D

σ

Materialization

Materialized here

σR.A = “c”

R

S

πB,D

σ

Iterators: Pipelining

è Each operator supports:
• Open()
• GetNext()σR.A = “c”

R

S
• GetNext()
• Close()

Iterator for Table Scan (R)
Open() {
/** initialize variables */
b = first block of R;
t = first tuple in block b;

}

GetNext() {
IF (t is past last tuple in block b) {

set b to next block;
IF (there is no next block)

/** no more tuples *//** no more tuples */
RETURN EOT;

ELSE t = first tuple in b;
}
/** return current tuple */
oldt = t;
set t to next tuple in block b;
RETURN oldt;

}

Close() {
/** nothing to be done */

}

Iterator for Select

Open() {

GetNext() {
LOOP:

t = Child.GetNext();
IF (t == EOT) {

σR.A = “c”

Open() {
/** initialize child */
Child.Open();

}

IF (t == EOT) {
/** no more tuples */
RETURN EOT;

}
ELSE IF (t.A == “c”)
RETURN t;

ENDLOOP:
}

Close() {
/** inform child */
Child.Close();

}

Iterator for Sort

Open() {

GetNext() {
IF (more tuples)

RETURN next tuple in order;
ELSE RETURN EOT;

}

τR.A

Open() {
/** Bulk of the work is here */
Child.Open();
Read all tuples from Child

and sort them
}

Close() {
/** inform child */
Child.Close();

}

Iterator for Tuple Nested Loop Join

Lexp Rexp

• TNLJ (conceptually)
for each r ∈ Lexp do

for each s ∈ Rexp do
if Lexp.C = Rexp.C, output r,s

Example 1: Left-Deep Plan

R3(C,D)

TableScan

TNLJ

TNLJ

R1(A,B)

TableScan

R2(B,C)

TableScan

R3(C,D)

Question: What is the sequence of getNext() calls?

Example 2: Right-Deep Plan

R3(C,D)

TableScan

TNLJ

TNLJ

R3(C,D)

R1(A,B)

TableScan

R2(B,C)

TableScan

Question: What is the sequence of getNext() calls?

Example

Worked on blackboardWorked on blackboard

Cost Measure for a Physical Plan

• There are many cost measures
– Time to completion
– Number of I/Os (we will see a lot of this)
– Number of getNext() calls– Number of getNext() calls

• Tradeoff: Simplicity of estimation Vs.
Accurate estimation of performance as
seen by user

Textbook outline

Chapter 15
15.1 Physical operators

- Scan, Sort (Ch. 11.4), Indexes (Ch. 13)

15.2-15.6 Implementing operators +15.2-15.6 Implementing operators +
estimating their cost

15.8 Buffer Management
15.9 Parallel Processing

Chapter 16
16.1 Parsing
16.2 Algebraic laws
16.3 Parse tree logical query plan

Textbook outline (contd.)

16.3 Parse tree à logical query plan
16.4 Estimating result sizes
16.5-16.7 Cost based optimization

Chapter 5 Relational Algebra
Chapter 6 SQL

Background Material

parse

Query rewriting

SQL query

parse tree

logical query planstatistics

Query Processing - In class order

2; 16.1

3; 16.2,16.3
First: A quick look at this

Physical plan generation

execute

result

logical query planstatistics

physical query plan

1; 13, 15

4; 16.4—16.7

Why do we need Query Rewriting?

• Pruning the HUGE space of physical plans
– Eliminating redundant conditions/operators
– Rules that will improve performance with very

high probabilityhigh probability

• Preprocessing
– Getting queries into a form that we know how

to handle best

è Reduces optimization time drastically without
noticeably affecting quality

Some Query Rewrite Rules

• Transform one logical plan into another
– Do not use statistics

• Equivalences in relational algebra
• Push-down predicates• Push-down predicates
• Do projects early
• Avoid cross-products if possible

Equivalences in Relational Algebra

R S = S R Commutativity
(R S) T = R (S T) Associativity

Also holds for: Cross Products, Union, Intersection

R x S = S x R
(R x S) x T = R x (S x T)
R U S = S U R
R U (S U T) = (R U S) U T

Apply Rewrite Rule (1)

πB,D

σR.A = “c” Λ R.C = S.C

X

πB,D

σR.A = “c”

σR.C = S.C

ΠB,D [σR.C=S.C [σR.A=“c”(R X S)]]

X

R S
X

R S

Rules: Project

Let: X = set of attributes
Y = set of attributes
XY = X U Y

π π ππxy (R) = πx [πy (R)]

Let p = predicate with only R attribs
q = predicate with only S attribs
m = predicate with only R,S attribs

Rules: σ + combined

σp (R S) =

σq (R S) =

[σp (R)] S

R [σq (S)]

Apply Rewrite Rule (2)

πB,D

X

σR.C = S.C

πB,D

σR.A = “c”

σR.C = S.C

ΠB,D [σR.C=S.C [σR.A=“c”(R)] X S]

σR.A = “c”

X

R

S

σR.A = “c”

X

R S

Apply Rewrite Rule (3)

πB,D

σ

πB,D

X

σR.C = S.C
Natural join

ΠB,D [[σR.A=“c”(R)] S]

σR.A = “c”

R

S
σR.A = “c”

X

R

S

Rules: σ + combined (continued)

σp∧∧∧∧q (R S) = [σp (R)] [σq (S)]

σp∧∧∧∧q∧∧∧∧m (R S) =

σ [σ σ]σm [(σp R) (σq S)]
σpvq (R S) =

[(σp R) S] U [R (σq S)]

σp1∧∧∧∧p2 (R) → σp1 [σp2 (R)]

σp (R S) → [σp (R)] S

Which are “good” transformations?

σ σ
R S → S R

πx [σp (R)] → πx {σp [πxz (R)]}

Conventional wisdom: do projects early

Example: R(A,B,C,D,E)
P: (A=3) ∧∧∧∧ (B=“cat”)

πE {σp (R)} vs. πE {σp{πABE(R)}}

But: What if we have A, B indexes?

B = “cat” A=3

Intersect pointers to get

pointers to matching tuples

Bottom line:

• No transformation is always good
• Some are usually good:

– Push selections down
– Avoid cross-products if possible– Avoid cross-products if possible
– Subqueries à Joins

Avoid Cross Products (if possible)

Select B,D
From R,S,T,U
Where R.A = S.B ∧
R.C=T.C ∧ R.D = U.D

• Which join trees avoid cross-products?
• If you can't avoid cross products, perform

them as late as possible

More Query Rewrite Rules

• Transform one logical plan into another
– Do not use statistics

• Equivalences in relational algebra
• Push-down predicates• Push-down predicates
• Do projects early
• Avoid cross-products if possible
• Use left-deep trees
• Subqueries à Joins
• Use of constraints, e.g., uniqueness

