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Query Rewriting
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We will revisit it towards the end of this lecture
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Physical Plan Generation
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Plans for Query Execution
• Roadmap

– Path of a SQL query
– Operator trees
– Physical Vs Logical plans
– Plumbing: Materialization Vs pipelining– Plumbing: Materialization Vs pipelining
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Logical Plans Vs. Physical Plans
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πB,D

σR.A = “c” S

Operator Plumbing

R

• Materialization: output of one operator written to 
disk, next operator reads from the disk 

• Pipelining: output of one operator directly fed to 
next operator
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πB,D

σ

Iterators: Pipelining

è Each operator supports:
• Open()
• GetNext()σR.A = “c”

R

S
• GetNext()
• Close()



Iterator for Table Scan (R)
Open() {
/** initialize variables */
b = first block of R;
t = first tuple in block b;

}

GetNext() {
IF (t is past last tuple in block b) {

set b to next block;
IF (there is no next block)

/** no more tuples *//** no more tuples */
RETURN EOT;

ELSE t = first tuple in b;     
}
/** return current tuple */
oldt = t;
set t to next tuple in block b;
RETURN oldt;

}

Close() {
/** nothing to be done */

}



Iterator for Select

Open() {

GetNext() {
LOOP: 

t = Child.GetNext();
IF (t == EOT) {

σR.A = “c”

Open() {
/** initialize child */
Child.Open();

}

IF (t == EOT) {
/** no more tuples */
RETURN EOT;

}   
ELSE IF (t.A == “c”)
RETURN t;

ENDLOOP:
}

Close() {
/** inform child */
Child.Close();

}



Iterator for Sort

Open() {

GetNext() {
IF (more tuples)

RETURN next tuple in order;
ELSE RETURN EOT;

}

τR.A

Open() {
/** Bulk of the work is here */
Child.Open();
Read all tuples from Child 

and sort them
}

Close() {
/** inform child */
Child.Close();

}



Iterator for Tuple Nested Loop Join

Lexp Rexp

• TNLJ  (conceptually)
for each r ∈ Lexp do

for each s ∈ Rexp do
if Lexp.C = Rexp.C, output r,s



Example 1: Left-Deep Plan
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Question: What is the sequence of getNext() calls?



Example 2: Right-Deep Plan

R3(C,D)

TableScan

TNLJ

TNLJ

R3(C,D)

R1(A,B)

TableScan

R2(B,C)

TableScan

Question: What is the sequence of getNext() calls?



Example

Worked on blackboardWorked on blackboard



Cost Measure for a Physical Plan

• There are many cost measures
– Time to completion
– Number of I/Os (we will see a lot of this)
– Number of getNext() calls– Number of getNext() calls

• Tradeoff: Simplicity of estimation Vs. 
Accurate estimation of performance as 
seen by user



Textbook outline

Chapter 15
15.1 Physical operators

- Scan, Sort (Ch. 11.4), Indexes (Ch. 13)

15.2-15.6 Implementing operators +15.2-15.6 Implementing operators +
estimating their cost

15.8 Buffer Management
15.9 Parallel Processing



Chapter 16
16.1 Parsing
16.2 Algebraic laws
16.3 Parse tree logical query plan

Textbook outline (contd.)

16.3 Parse tree à logical query plan
16.4 Estimating result sizes
16.5-16.7  Cost based optimization



Chapter 5 Relational Algebra
Chapter 6 SQL

Background Material
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Why do we need Query Rewriting?

• Pruning the HUGE space of physical plans
– Eliminating redundant conditions/operators
– Rules that will improve performance with very 

high probabilityhigh probability

• Preprocessing
– Getting queries into a form that we know how 

to handle best

è Reduces optimization time drastically without 
noticeably affecting quality 



Some Query Rewrite Rules

• Transform one logical plan into another
– Do not use statistics

• Equivalences in relational algebra
• Push-down predicates• Push-down predicates
• Do projects early
• Avoid cross-products if possible



Equivalences in Relational Algebra

R S = S R   Commutativity
(R S) T = R (S T)   Associativity 

Also holds for: Cross Products, Union, Intersection

R x S = S x R
(R x S) x T = R x (S x T)
R U S = S U R
R U (S U T) = (R U S) U T



Apply Rewrite Rule (1)

πB,D

σR.A = “c” Λ R.C = S.C
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σR.C = S.C
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Rules: Project

Let: X = set of attributes
Y = set of attributes
XY = X U Y

π π ππxy (R) = πx [πy (R)] 



Let p = predicate with only R attribs
q = predicate with only S attribs
m = predicate with only R,S attribs

Rules: σ +      combined

σp (R      S) = 

σq (R      S) =   

[σp (R)]      S

R      [σq (S)]  



Apply Rewrite Rule (2)
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Apply Rewrite Rule (3)

πB,D

σ

πB,D

X

σR.C = S.C
Natural join

ΠB,D [[σR.A=“c”(R)]       S]
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Rules: σ +      combined  (continued)

σp∧∧∧∧q (R      S)  = [σp (R)]      [σq (S)]

σp∧∧∧∧q∧∧∧∧m (R      S) = 

σ [ σ σ ]σm [(σp R)      (σq S)]
σpvq (R      S) = 

[(σp R)     S] U [R (σq S)] 



σp1∧∧∧∧p2 (R) → σp1 [σp2 (R)] 

σp (R     S) → [σp (R)]       S

Which are “good” transformations?

σ σ
R      S  → S       R

πx [σp (R)] → πx {σp [πxz (R)]}



Conventional wisdom: do projects early

Example: R(A,B,C,D,E)
P: (A=3) ∧∧∧∧ (B=“cat”)

πE {σp (R)}    vs.   πE {σp{πABE(R)}}  



But: What if we have A, B indexes?

B = “cat”                                A=3

Intersect pointers to get

pointers to matching tuples



Bottom line:

• No transformation is always good
• Some are usually good: 

– Push selections down
– Avoid cross-products if possible– Avoid cross-products if possible
– Subqueries à Joins



Avoid Cross Products (if possible)

Select B,D
From R,S,T,U
Where R.A = S.B ∧
R.C=T.C ∧ R.D = U.D

• Which join trees avoid cross-products?
• If you can't avoid cross products, perform 

them as late as possible



More Query Rewrite Rules

• Transform one logical plan into another
– Do not use statistics

• Equivalences in relational algebra
• Push-down predicates• Push-down predicates
• Do projects early
• Avoid cross-products if possible
• Use left-deep trees
• Subqueries à Joins 
• Use of constraints, e.g., uniqueness


