CPS216: Advanced Database
Systems

Notes 05: Operators for Data Access
Shivnath Babu

Problem

m Relation: Employee (ID, Name, Dept, ...)
= 10 M tuples
= (Filter) Query:

SELECT *
FROM Employee
WHERE Name = “Bob”

Solution #1: Full Table Scan

m Storage:
= Employee relation stored in contiguous blocks
m Query plan:

= Scan the entire relation, output tuples with
Name = “Bob”

m Cost:
= Size of each record = 100 bytes
= Size of relation= 10 M x 100 = 1 GB
m Time @ 20 MB/s = 1 Minute

Solution #2

m Storage:

= Employee relation sorted on Name attribute
= Query plan:

» Binary search

Solution #

m Cost:
= Size of a block: 1024 bytes
= Number of records per block: 1024 /100 = 10
= Total number of blocks: I0M /10=1M
= Blocks accessed by binary search: 20
= Total time: 20 ms x 20 = 400 ms

Solution #2: Issues
m Filters on different attributes:

SELECT *
FROM Employee

WHERE Dept = “Sales”

m Inserts and Deletes

Indexes

m Data structures that efficiently evaluate a class of
filter predicates over a relation

m Class of filter predicates:
= Single or multi-attributes (index-key attributes)
= Range and/or equality predicates

m (Usually) independent of physical storage ot

relation:

= Multiple indexes per relation

Indexes

m Disk resident
= Large to fit in memory
m Persistent

m Updated when indexed relation updated
= Relation updates costlier

= Query cheaper

Problem

m Relation: Employee (ID, Name, Dept, ...)
= (Filter) Query:

SELECT *
FROM Employee
WHERE Name = “Bob”

Single-Attribute Index on Name that supports equality predicates

Roadmap

m Motivation
= Single-Attribute Indexes: Overview
m Order-based Indexes

m B-Trees

m Hash-based Indexes (May cover in future)
= Extensible Hashing
= Linear Hashing

= Multi-Attribute Indexes (Chapter 14 GMUW,
May cover in future)

Single Attribute Index: General Construction

Single Attribute Index: General Construction

Exceptions

m Sparse Indexes
= Require specific physical layout of relation
= Example: Relation sorted on indexed attribute
= More efficient

Single Attribute Index: General Construction

Textbook: Dense Index

Single Attribute Index: General Construction

How do we organize
(attribute, pointer) pairs?

Idea: Use dictionary
data structures

Issue: Disk resident?

Roadmap

m Motivation
m Single-Attribute Indexes: Overview
m Order-based Indexes

m B-Trees

m Hash-based Indexes
m Extensible Hashing
m Linear Hashing

m Multi-Attribute Indexes

B-Trees

= Adaptation of search tree data structure
m 2-3 trees

m Supports range predicates (and equality)

Use Binary Search Tree Directly?

/@\

@ @

16 {321 5471 74| 83| 92

TP T T 7T

Use Binary Search Tree Directly?

m Store records of type
<key, left-ptr, right-ptr, data-ptr>
= Remember position of root

= Question: will this work?
® Yes
= But we can do better!

Use Binary Search Tree Directly?

= Number of keys: 1 M
= Number of levels: log (2/20) = 20
m Total cost index lookup: 20 random disk I/0

m 20 x 20 ms = 400 ms

B-Tree: less than 3 random disk I /O

B-Tree vs. Binary Search Tree

Kli k213 |

1 Random I /O prunes tree by 40

1 Random I /O prunes tree by half

B-Tree Example

36 57 | 63 76 87 92 100

????????

B-Tree Example

63

Meaning of Internal Node

O

84 < key < 91

B-Tree Example

63

Meaning of Leaf Nodes

63

/

> Next leaf

\

/

pointer to record 63

|

pointer to record 76

Equality Predicates

63

Equality Predicates

Equality Predicates

Equality Predicates

Range Predicates

Range Predicates

e

Range Predicates

e

Range Predicates

e

Range Predicates

e

Range Predicates

e

General B-Trees

= Fixed parameter: n
= Number of keys: n
= Number of pointers: n + 1

B-Tree Example

63

General B-Trees

= Fixed parameter: n
= Number of keys: n
= Number of pointers: n + 1

m All leaves at same depth

= All (key, record pointer) in leaves

B-Tree Example

63

General B-Trees:
Space related constraints

m Use at least

Root: 2 pomnters

Internal: | (n+1)/2| pointers

Leaf: | (n+1)/2] pointers to data

Leaf Nodes

n key slots

(n+1) pointer slots

Leaf Nodes

n key slots kl ko

(n+1) pointer slots \

record of Iq \

record of ks recordof k

Leaf Nodes

(n+1)
m= |- > |

n key slots kl ks | k3

(n+1) pointer slots \

record of Iq \

record of ks recordof k

Internal Nodes

n key slots

(n+1) pointer slots

Internal Nodes

n key slots

(n+1) pointer slots

e

1<ey<k1

Internal Nodes

(1) > ((n;n |

<€

n key slots kl ks | k3

(n+1) pointer slots

e

1<ey<k1

Root Node

(m+1) = 2

<€

n key slots kl ks | k3

(n+1) pointer slots

e

1<ey<k1

Limits

= Why the specific limits
[(+1)/2] and|(n+1)/2]7?
= Why different limits for leaf and internal nodes?

m Can we reduce each limit?
m Can we increase each limit?

= What are the implications?

