
CPS216: Advanced Database CPS216: Advanced Database

SystemsSystems

1

Notes 06: Operators for Data Access Notes 06: Operators for Data Access
(contd.)(contd.)

Shivnath BabuShivnath Babu

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36

2

Insert: 62

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36 62

3

Insert: 62

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36 62

4

Insert: 50

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36 50 62

62

5

Insert: 50

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36 50 62

62

6

Insert: 75

Insertion in a BInsertion in a B--TreeTree

49

49

n = 2

15 36 50 62

62

75

7

Insert: 75

InsertionInsertion

8

InsertionInsertion

9

InsertionInsertion

10

InsertionInsertion

11

InsertionInsertion

12

InsertionInsertion

13

InsertionInsertion

14

InsertionInsertion

15

InsertionInsertion

16

InsertionInsertion

17

InsertionInsertion

18

Insertion: PrimitivesInsertion: Primitives

�� Inserting into a leaf nodeInserting into a leaf node

�� Splitting a leaf nodeSplitting a leaf node

�� Splitting an internal nodeSplitting an internal node

Splitting root nodeSplitting root node

19

�� Splitting root nodeSplitting root node

Inserting into a Leaf NodeInserting into a Leaf Node

58

20

54 57 60 62

58

Inserting into a Leaf NodeInserting into a Leaf Node

58

21

54 57 60 62

58

Inserting into a Leaf NodeInserting into a Leaf Node

58

22

54 57 60 62

58

58

61 54 66

Splitting a Leaf NodeSplitting a Leaf Node

23

54 57 60 6258

61 54 66

Splitting a Leaf NodeSplitting a Leaf Node

24

54 57 60 6258

61 54 66

Splitting a Leaf NodeSplitting a Leaf Node

25

54 57 61 6258 60

61 54 66

59

Splitting a Leaf NodeSplitting a Leaf Node

26

54 57 61 6258 60

61 54 6659

Splitting a Leaf NodeSplitting a Leaf Node

27

54 57 61 6258 60

59

9921 ……

Splitting an Internal NodeSplitting an Internal Node

59

54 6640

[59, 66)[54, 59)

74 84

[66,74)

59

9921 ……

Splitting an Internal NodeSplitting an Internal Node

59

54 6640 74 84

[59, 66)[54, 59) [66,74)

66

9921 ……

[66, 99)[21,66)

Splitting an Internal NodeSplitting an Internal Node

595440 74 84

[59, 66)[54, 59)

[21,66)

[66,74)

59

Splitting the RootSplitting the Root

54 6640 74 84

59

[59, 66)[54, 59) [66,74)

59

Splitting the RootSplitting the Root

54 6640 74 84

59

[59, 66)[54, 59) [66,74)

66

Splitting the RootSplitting the Root

5440 74 8459

[59, 66)[54, 59) [66,74)

DeletionDeletion

34

DeletionDeletion

35

redistribute

DeletionDeletion

36

Deletion Deletion -- IIII

37

Deletion Deletion -- IIII

merge

Deletion Deletion -- IIII

39

Deletion Deletion -- IIII

40

Deletion Deletion -- IIII

41

Deletion Deletion -- IIII

merge

Not needed

42

merge

Deletion Deletion -- IIII

43

Deletion: PrimitivesDeletion: Primitives

�� Delete key from a leafDelete key from a leaf

�� Redistribute keys between sibling leavesRedistribute keys between sibling leaves

�� Merge a leaf into its siblingMerge a leaf into its sibling

Redistribute keys between two sibling internal Redistribute keys between two sibling internal

44

�� Redistribute keys between two sibling internal Redistribute keys between two sibling internal

nodesnodes

�� Merge an internal node into its siblingMerge an internal node into its sibling

Merge Leaf into SiblingMerge Leaf into Sibling

67 85…72

45

54 58 64 68 72 75

Merge Leaf into SiblingMerge Leaf into Sibling

67…72 85

46

54 58 64 68 75

Merge Leaf into SiblingMerge Leaf into Sibling

67…72 85

47

54 58 64 68 75

Merge Leaf into SiblingMerge Leaf into Sibling

…72 85

48

54 58 64 68 75

Merge Internal Node into SiblingMerge Internal Node into Sibling

59 ……

49

41 48 52 63 74

[52, 59) [59,63)

Merge Internal Node into SiblingMerge Internal Node into Sibling

59 ……

50

41 48 52 63

[52, 59) [59,63)

59

BB--Tree RoadmapTree Roadmap

�� BB--TreeTree

�� RecapRecap

�� Insertion (recap)Insertion (recap)

�� DeletionDeletion

51

�� DeletionDeletion

�� ConstructionConstruction

�� EfficiencyEfficiency

�� BB--Tree variantsTree variants

�� HashHash--based Indexesbased Indexes

QuestionQuestion

How does insertion-based construction

52

How does insertion-based construction

perform?

BB--Tree ConstructionTree Construction

53

11 1315 21 344148 57 6275 81 97

Sort

BB--Tree ConstructionTree Construction

75 9721 41 571511 13 4834 62 81

Scan

75 81 9711 13 15 21 34 41 48 57 62

BB--Tree ConstructionTree Construction

21 48 75

11 13 15 21 34 41 48 57 62 75 81 97

Scan

BB--Tree ConstructionTree Construction

Why is sort-based construction better than

insertion-based one?

56

insertion-based one?

Cost of BCost of B--Tree OperationsTree Operations

�� Height of BHeight of B--Tree: HTree: H

�� Assume no duplicatesAssume no duplicates

�� Question: what is the random I/O cost of:Question: what is the random I/O cost of:

Insertion:Insertion:

57

�� Insertion:Insertion:

�� Deletion:Deletion:

�� Equality search:Equality search:

�� Range Search: Range Search:

Height of BHeight of B--TreeTree

�� Number of keys: NNumber of keys: N

�� BB--Tree parameter: nTree parameter: n

log Nlog N

58

Height ≈ log N = Height ≈ log N =
nn

log Nlog N

log nlog n

In practice: 2In practice: 2--3 levels3 levels

Question: How do you pick parameter n? Question: How do you pick parameter n?

1.1. Ignore inserts and deletesIgnore inserts and deletes

2.2. Optimize for equality searchesOptimize for equality searches

59

2.2. Optimize for equality searchesOptimize for equality searches

3.3. Assume no duplicatesAssume no duplicates

RoadmapRoadmap

�� BB--TreeTree

�� BB--Tree variantsTree variants

�� Sparse IndexSparse Index

�� Duplicate KeysDuplicate Keys

60

�� Duplicate KeysDuplicate Keys

�� HashHash--based Indexesbased Indexes

RoadmapRoadmap

�� BB--TreeTree

�� BB--Tree variantsTree variants

�� HashHash--based Indexesbased Indexes

Static Hash TableStatic Hash Table

61

�� Static Hash TableStatic Hash Table

�� Extensible Hash TableExtensible Hash Table

�� Linear Hash TableLinear Hash Table

HashHash--Based IndexesBased Indexes

�� Adaptations of main memory hash tablesAdaptations of main memory hash tables

�� Support equality searchesSupport equality searches

�� No range searchesNo range searches

62

Indexing Problem (recap)Indexing Problem (recap)

a
1

2
a

A = val

Index Keys
record pointers

i
a

na

A = val

Main Memory Hash TableMain Memory Hash Table

buckets

32 (null)

(null)10

480

1

2key
h (key)

64

(null)

(null)

(null)

27 75

21

55

3

4

5

6

7

h (key)

h (key) = key % 8

Adapting to diskAdapting to disk

�� 1 Hash Bucket = 1 Block1 Hash Bucket = 1 Block

�� All keys that hash to bucket stored in the blockAll keys that hash to bucket stored in the block

�� Intuition: keys in a bucket usually accessed togetherIntuition: keys in a bucket usually accessed together

�� No need for linked lists of keys …No need for linked lists of keys …

65

�� No need for linked lists of keys …No need for linked lists of keys …

Adapting to DiskAdapting to Disk

66

How do we handle this?

Adapting to diskAdapting to disk

�� 1 Hash Bucket = 1 Block1 Hash Bucket = 1 Block

�� All keys that hash to bucket stored in the blockAll keys that hash to bucket stored in the block

�� Intuition: keys in a bucket usually accessed togetherIntuition: keys in a bucket usually accessed together

�� No need for linked lists of keys …No need for linked lists of keys …

67

�� No need for linked lists of keys …No need for linked lists of keys …

�� … but need linked list of blocks (… but need linked list of blocks (overflow blocksoverflow blocks))

Adapting to DiskAdapting to Disk

68

Adapting to diskAdapting to disk

�� Bucket Id Bucket Id →→ Disk Address mappingDisk Address mapping

�� Contiguous blocksContiguous blocks

�� Store mapping in main memoryStore mapping in main memory

��Too large?Too large?

69

��Too large?Too large?

��Dynamic Dynamic �� Linear and Extensible hash tablesLinear and Extensible hash tables

Beware of claims that assume 1 I/O Beware of claims that assume 1 I/O

for hash tables and 3 I/Os for Bfor hash tables and 3 I/Os for B--Tree!!Tree!!

70

for hash tables and 3 I/Os for Bfor hash tables and 3 I/Os for B--Tree!!Tree!!

