CPS216: Advanced Database
Systems

Notes 06: Operators for Data Access
(contd.)

Shivnath Babu

Insertion in a B-Tree

49

e

T

Insert: 62

Insertion in a B-Tree

49

e

T

Insert: 62

Insertion in a B-Tree

49

e

T

Insert: 50

Insertion in a B-Tree

49 | 62

e

—

s

49 | 50 62

/ | L

=/l j

Insert: 50

Insertion in a B-Tree

49 | 62

e

—

s

49 | 50 62

/ | L

=/l j

Insert: 75

Insertion in a B-Tree

49 | 62

e

—

s

49 | 50 62

/ | L

e R

Insert: 75

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion: Primitives

m [nserting into a leaf node
m Splitting a leaf node

m Splitting an internal node

m Splitting root node

Inserting into a Leaf Node

Inserting into a Leaf Node

Inserting into a Leaf Node

Splitting a L.eat Node

Splitting a L.eat Node

Splitting a L.eat Node

Splitting a L.eat Node

59

54 | 66

N
N
N

Splitting a L.eat Node

Splitting an Internal Node

59

40 | 54 | 66 | 74 | 84

o

///“ \\

54,59) [59,66) [66,74)

Splitting an Internal Node

59

40 | 54 | 66 | 74 | 84

o

///“ \\

54,59) [59,66) [66,74)

Splitting an Internal Node

sTTS0
s N

99

N
4

40 74 | 84

% \ N \

/// \\\

54,59) [59, 66) (66,74)

Splitting the Root

59

40 | 54 | 66 | 74 | 84

o

///“ \\

54,59) [59,66) [66,74)

Splitting the Root

59

40 | 54 | 66 | 74 | 84

o

///“ \\

54,59) [59,66) [66,74)

Splitting the Root

66

Z

AN

40 | 54 | 59 74 | 84

L N VNN

/// \\\

[54,59) [59, 66) (66,74)

Deletion

Deletion

redistribute

Deletion

Deletion - 11

Deletion - 11

Deletion - 11

Deletion - 11

Deletion - 11

Deletion - 11

Not needed

Deletion - 11

Deletion: Primitives

m Delete key from a leaft
m Redistribute keys between sibling leaves
m) 8 Merge a leaf into its sibling

m Redistribute keys between two sibling internal
nodes

=) m Merge an internal node into its sibling

Merge Leaf into Sibling

®

/

Merge Leaf into Sibling

®

Merge Leaf into Sibling

@ %

/

Merge Leaf into Sibling

®

/

Merge Internal Node into Sibling

Merge Internal Node into Sibling

B-Tree Roadmap

m B-Tree
m Recap

m Insertion (recap)
m Deletion

‘ m Construction
m Efficiency

m B-Tree variants
m Hash-based Indexes

Question

How does insertion-based construction
perform?

B-Tree Construction

B-Tree Construction

B-Tree Construction

21 | 48 | 75

7

13 | 15| |21 | 24 | 41 | |48 | 57

B-Tree Construction

Why 1s sort-based construction better than

insertion-based one?

Cost of B-Tree Operations

m Height of B-Tree: H

m Assume no duplicates

B Question: what is the random I/O cost of:
= Insertion:
® Deletion:
® Equality search:
® Range Search:

Height of B-Tree

m Number of keys: N

m B-Tree parameter: n

log N

log n

Height = lognN =

In practice: 2-3 levels

Question: How do you pick parameter n?

1. Ignore inserts and deletes
2. Optimize for equality searches
3. Assume no duplicates

Roadmap

m B-Tree

m B-Tree variants

® Sparse Index

® Duplicate Keys
m Hash-based Indexes

Roadmap

m B-Tree

B B-Tree variants

m Hash-based Indexes
‘ m Static Hash Table
m Extensible Hash Table
m Linear Hash Table

Hash-Based Indexes

m Adaptations of main memory hash tables

m Support equality searches

m No range searches

Indexing Problem (recap)

Index Keys

record pointers

Main Memory Hash Table

buckets
.

_, (null)

h (key) = key % 8

Adapting to disk

m | Hash Bucket = 1 Block
= All keys that hash to bucket stored in the block

® Intuition: keys in a bucket usually accessed together
= No need for linked lists of keys ...

Adapting to Disk

——
How do we handle this?

Adapting to disk

m | Hash Bucket = 1 Block
= All keys that hash to bucket stored in the block
® Intuition: keys in a bucket usually accessed together
= No need for linked lists of keys ...
® ... but need linked list of blocks (overflow blocks)

Adapting to Disk

Adapting to disk

m Bucket Id =& Disk Address mapping
= Contiguous blocks
® Store mapping in main memory
mToo large?
m Dynamic =» Linear and Extensible hash tables

Beware of claims that assume 1 1/0

for hash tables and 3 1/Os for B-Treel!!

