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Insertion: PrimitivesInsertion: Primitives

�� Inserting into a leaf nodeInserting into a leaf node

�� Splitting a leaf nodeSplitting a leaf node

�� Splitting an internal nodeSplitting an internal node

Splitting root nodeSplitting root node
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�� Splitting root nodeSplitting root node
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Deletion Deletion -- IIII

merge

Not needed
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merge



Deletion Deletion -- IIII
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Deletion: PrimitivesDeletion: Primitives

�� Delete key from a leafDelete key from a leaf

�� Redistribute keys between sibling leavesRedistribute keys between sibling leaves

�� Merge a leaf into its siblingMerge a leaf into its sibling

Redistribute keys between two sibling internal Redistribute keys between two sibling internal 
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�� Redistribute keys between two sibling internal Redistribute keys between two sibling internal 

nodesnodes

�� Merge an internal node into its siblingMerge an internal node into its sibling



Merge Leaf into SiblingMerge Leaf into Sibling
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Merge Internal Node into SiblingMerge Internal Node into Sibling
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BB--Tree RoadmapTree Roadmap

�� BB--TreeTree

�� RecapRecap

�� Insertion (recap)Insertion (recap)

�� DeletionDeletion
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�� DeletionDeletion

�� ConstructionConstruction

�� EfficiencyEfficiency

�� BB--Tree variantsTree variants

�� HashHash--based Indexesbased Indexes



QuestionQuestion

How does insertion-based construction
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How does insertion-based construction

perform?



BB--Tree ConstructionTree Construction
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BB--Tree ConstructionTree Construction
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BB--Tree ConstructionTree Construction

Why is sort-based construction better than

insertion-based one?
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insertion-based one?



Cost of BCost of B--Tree OperationsTree Operations

�� Height of BHeight of B--Tree: HTree: H

�� Assume no duplicatesAssume no duplicates

�� Question: what is the random I/O cost of:Question: what is the random I/O cost of:

Insertion:Insertion:
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�� Insertion:Insertion:

�� Deletion:Deletion:

�� Equality search:Equality search:

�� Range Search: Range Search: 



Height of BHeight of B--TreeTree

�� Number of keys:  NNumber of keys:  N

�� BB--Tree parameter: nTree parameter: n

log Nlog N

58

Height ≈  log   N  =  Height ≈  log   N  =  
nn

log Nlog N

log nlog n

In practice: 2In practice: 2--3 levels3 levels



Question: How do you pick parameter n? Question: How do you pick parameter n? 

1.1. Ignore inserts and deletesIgnore inserts and deletes

2.2. Optimize for equality searchesOptimize for equality searches
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2.2. Optimize for equality searchesOptimize for equality searches

3.3. Assume no duplicatesAssume no duplicates



RoadmapRoadmap

�� BB--TreeTree

�� BB--Tree variantsTree variants

�� Sparse IndexSparse Index

�� Duplicate KeysDuplicate Keys
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�� Duplicate KeysDuplicate Keys

�� HashHash--based Indexesbased Indexes



RoadmapRoadmap

�� BB--TreeTree

�� BB--Tree variantsTree variants

�� HashHash--based Indexesbased Indexes

Static Hash TableStatic Hash Table
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�� Static Hash TableStatic Hash Table

�� Extensible Hash TableExtensible Hash Table

�� Linear Hash TableLinear Hash Table



HashHash--Based IndexesBased Indexes

�� Adaptations of main memory hash tablesAdaptations of main memory hash tables

�� Support equality searchesSupport equality searches

�� No range searchesNo range searches
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Indexing Problem (recap)Indexing Problem (recap)

a
1

2
a

A = val

Index Keys
record pointers

i
a

na

A = val



Main Memory Hash TableMain Memory Hash Table

buckets

32 (null)

(null)10

480

1

2key
h (key)
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(null)

(null)

(null)

27 75

21
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h (key)

h (key) = key % 8 



Adapting to diskAdapting to disk

�� 1 Hash Bucket = 1 Block1 Hash Bucket = 1 Block

�� All keys that hash to bucket stored in the blockAll keys that hash to bucket stored in the block

�� Intuition: keys in a bucket usually accessed togetherIntuition: keys in a bucket usually accessed together

�� No need for linked lists of keys …No need for linked lists of keys …
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�� No need for linked lists of keys …No need for linked lists of keys …



Adapting to DiskAdapting to Disk
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How do we handle this?



Adapting to diskAdapting to disk

�� 1 Hash Bucket = 1 Block1 Hash Bucket = 1 Block

�� All keys that hash to bucket stored in the blockAll keys that hash to bucket stored in the block

�� Intuition: keys in a bucket usually accessed togetherIntuition: keys in a bucket usually accessed together

�� No need for linked lists of keys …No need for linked lists of keys …
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�� No need for linked lists of keys …No need for linked lists of keys …

�� … but need linked list of blocks (… but need linked list of blocks (overflow blocksoverflow blocks))



Adapting to DiskAdapting to Disk
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Adapting to diskAdapting to disk

�� Bucket Id Bucket Id →→ Disk Address mappingDisk Address mapping

�� Contiguous blocksContiguous blocks

�� Store mapping in main memoryStore mapping in main memory

��Too large?Too large?
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��Too large?Too large?

��Dynamic Dynamic �� Linear and Extensible hash tablesLinear and Extensible hash tables



Beware of  claims that assume 1 I/O Beware of  claims that assume 1 I/O 

for hash tables and 3 I/Os for Bfor hash tables and 3 I/Os for B--Tree!!Tree!!
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for hash tables and 3 I/Os for Bfor hash tables and 3 I/Os for B--Tree!!Tree!!


