CPS216: Advanced Database
Systems

Notes 07:Query Execution
(Sort and Join operators)
Shivnhath Babu

Query Processing - In class order
} SQL query

> 2;16.1

| parse tree

9 g < 3; 16.2,16.3
statistics } logical query plan

Ny
hysical plan g@ < 4:16.4—16.7

} physical query plan

Cexecute > * 1,13, 15

! result

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Nested Loop Join (NLJ)

R B C C D
a 10 10 cat
a 20 | P4 | 40 | dog
b 10 15 bat
d 30 20 rat

 NLJ (conceptually)
foreachr € R1 do
foreach s € R2 do
if r.C =s.C then output r,s pair

Nested Loop Join (contd.)

* Tuple-based
* Block-based
* Asymmetric

Implementing Operators

- Basic algorithm
- Scan-based (e.g., NLJ)
- Sort-based
- Using existing indexes
- Hash-based (building an index on the fly)

- Memory management
- Tradeoff between memory and #10s

- Parallel processing

Roadmap

A simple operator: Nested Loop Join

Preliminaries <,i

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Operator Cost Model

« Simplest: Count # of disk blocks read and
written during operator execution

« Extends to query plans
— Cost of query plan = Sum of operator costs

« Caution: Ignoring CPU costs

Assumptions

» Single-processor-single-disk machine
— WIll consider parallelism later
* Ignore cost of writing out result

— Output size is independent of operator
implementation

 Ignore # accesses to index blocks

Parameters used in Cost Model

B(R) = # blocks storing R tuples

T(R) = #tuples in R

V(R,A) = # distinct values of attr A in R
M =# memory blocks available

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes
Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Notions of clustering

» Clustered file organization

R1 R2 51 S2

R3 R4 S3 54

e Clustered relation

R1 R2 R3 R4

» Clustering index

R5 R5 R7 R8

Clustering Index

Tuples with a given value of the search
key packed in as few blocks as possible

10
10

|35
indh 19
INndaex

T~ |19

19

19
42
37

Examples

T(R) =10,000

B(R) =200

If R is clustered, then # R tuples per block =
10,000/200 = 50

Let V(R,A) =40

=2>1f | is a clustering index on R.A, then # |Os to
access Og a - «»(R) =250/50 = 5

=> If | is a non-clustering index on R.A, then #
|Os to access Ok 4 - «»(R) =250 (> B(R))

Operator Classes

Tuple-at-a-time | Full-relation
Unary Select Sort
Binary Difference

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes
— Hash-based

Buffer Management

Parallel Processing

Implementing Tuple-at-a-time
Operators

* One pass algorithm:
— Scan
— Process tuples one by one
— Write output

* Cost = B(R)

— Remember: Cost = # 10s, and we ignore the
cost to write output

Implementing a Full-Relation
Operator, Ex: Sort

Suppose T(R) x tupleSize(R) <= M x |[B(R)|
Read R completely into memory
Sort

Write output
Cost = B(R)

Implementing a Full-Relation
Operator, Ex: Sort

Suppose R won't fit within M blocks

Consider a two-pass algorithm for Sort;
generalizes to a multi-pass algorithm

Read R into memory in M-sized chunks

Sort each chunk in memory and write out
to disk as a sorted sublist

Merge all sorted sublists
Write output

Two-phase Sort: Phase 1

ORI OIN]| -

999

1000

96

1

97

Suppose B(R) = 1000, R is clustered, and M = 100

100

98

101

200

99

201

100

300

Memory

Sorted Sublists

801

900

901

1000

Two-phase Sort: Phase 2

100 | aunns 1
200 | wenss 101 L >
300 | ===er 201 o \ >
4 | 4
)))
Sorted Sublists 6 / .
4
8 .
900 | aunns 801 —| 9 999
10 1000
1000 | ===== 901 /

Memory Sorted R

Analysis of Two-Phase Sort

» Cost = 3xB(R) if R is clustered,
= B(R) + 2B(R’) otherwise
* Memory requirement M >= B(R)"?

Duplicate Elimination

Suppose B(R) <= M and R is clustered
Use an in-memory index structure

Cost = B(R)

Can we do with less memory?

—B(3(R)) <= M

— Aggregation is similar to duplicate elimination

Duplicate Elimination Based on
Sorting

« Sort, then eliminate duplicates
* Cost = Cost of sorting + B(R)

« Can we reduce cost?
— Eliminate duplicates during the merge phase

Back to Nested Loop Join (NLJ)

B C C D

a 10 10 cat
a 20 | P4 | 40 | dog
b 10 15 bat
d 30 20 rat

 NLJ (conceptually)
foreachr e R do
foreachs € S do

if r.C =s.C then output r,s pair

S

Analysis of Tuple-based NLJ

* Cost with R as outer = T(R) + T(R) x T(S)
* Costwith S as outer = T(S) + T(R) x T(S)
e M>=2

Block-based NLJ

* Suppose R is outer
— Loop: Get the next M-1 R blocks into memory
— Join these with each block of S

 B(R) + (B(R)/M-1) x B(S)
« What if S is outer?
— B(S) + (B(S)/M-1) x B(R)

Let us work out an NLJ Example

* Relations are not clustered

« T(R1)=10,000 T(R2) =5,000
10 tuples/block for R1; and for R2
M = 101 blocks

Tuple-based NLJ Cost: for each R1 tuple:
|[Read tuple + Read R2)]
Total =10,000 [1+500‘O'] 50,010,000 IOs

Can we do better when R,S are

not clustered?

Use our memory

(1)
(2)
(3)

Read 100 blocks worth of R1 tuples
Read all of R2 (1 block at a time) + join

Repeat until done

Cost: for each R1 chunk:
Read chunk: 1000 IOs
Read R2: 5000 IOs
Total/chunk = 6000

Total = 10,000 x 6000 = 60,000 IOs
1,000 Vs. 50,010,000!]

« Can we do better?

@+ Reverse join order: R2 ><] R1
Total = 5000 x (1000 + 10,000) =
1000

5x 11,000 = 55,000 IOs
[Vs. 60,000]

Example contd. NLJ R2 ><1 R1

* Now suppose relations are clustered

Cost
For each R2 chunk:
Read chunk: 100 IOs
Read R1: 1000 IOs
Total/chunk = 1,100

Total= 5 chunks x 1,100 = 5,500 IOs
[Vs. 55,000]

Joins with Sorting

« Sort-Merge Join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) 1« 1;]« 1,
While (i< T(R1)) A (j £ T(R2)) do
if R1{1}.C = R2{] }.C then OutputTuples
else if R1{1}.C > R2{j}.Cthenj « j+1
else if R1{1}.C <R2{j}.Ctheni« i+1

Procedure Output-Tuples
While (R1{i}.C = R2{j}.C) A (i < T(R1)) do
) <= 1J;
while (R1{i}.C = R2{jj }.C) A (jj < T(R2)) do
[output pair R1{ 1}, R2{ | };
] <+]

| i+1]

Example

i R1{i}.C R2{j}.C j
1 10) 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5
50 6
52 V4

Block-based Sort-Merge Join

* Block-based sort
* Block-based merge

Two-phase Sort: Phase 1

ORI OIN]| -

999

1000

Suppose B(R) = 1000 and M =100

96

97

98

101

99

201

100

Memory

100

200

300

Sorted Sublists

801

901

900

1000

Two-phase Sort: Phase 2

100 | aunns 1
200 | wenss 101 L >
300 | ===er 201 o \ >
4 | 4
)))
Sorted Sublists 6 / .
4
8 .
900 | aunns 801 —| 9 999
10 1000
1000 | ===== 901 /

Memory Sorted R

Sort-Merge Jo

R1

N

—{ D

R2

7777

Sorted R1 \
i

\
§
\

\ V

Apply our
merge
algorithm

Sorted RZ/

<7////////////%>

sorted sublists

Analysis of Sort-Merge Join

 Cost=5x(B(R)+ B(95))
 Memory requirement:
M >= (max(B(R), B(S)))"”

Continuing with our Example

R1,R2 clustered, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 =7,500 IOs

But: NLJ cost = 5,500
So merge join does not pay off!

However ...

* NLJ cost = B(R) + B(R)B(S)/M-1 =
O(B(R)B(S)) [Quadratic]

« Sort-merge join cost = 5 x (B(R) + B(S)) =
O(B(R) + B(S)) [Linear]

Can we Improve Sort-Merge Join?

77777

R1 — < Sorted R1

Apply our
merge

algorithm

R2 |\ — |

Do we need to create the sorted R1, R27

A more “Efficient” Sort-Merge Join

o

R1

—{ D

R2

I

\
§
\

\ V

Impii—

Apply our
merge
algorithm

sorted sublists

Analysis of the “Efficient” Sort-
Merge Join
» Cost =3 x (B(R) + B(S))
[Vs. 5 x (B(R) + B(S))]

* Memory requirement:
M>= (B(R) + B(S))"”
[Vs. M >= (max(B(R), B(S)))"?

Another catch with the more “Efficient”
version: Higher chances of thrashing!

Cost of “Efficient” Sort-Merge join:

Cost = Read R1 + Write R1 into sublists

+ Read R2 + Write R2 into sublists
+ Read R1 and R2 sublists for Join

= 2000 + 1000 + 1500 = 4500
[Vs. 7500]

Memory requirements in our Example

B(R1) = 1000 blocks, 1000"2 = 31.62
B(R2) = 500 blocks, 500"2 = 22.36
B(R1) + B(R2) = 1500, 150072 = 38.7

M > 32 buffers for simple sort-merge join
M > 39 buffers for efficient sort-merge join

Joins Using Existing Indexes

B C Index | C D
on S.C S
a 10 10 cat
a | 20 | D« < 40 | dog
b 10 15 bat
d 30 20 rat

* Indexed NLJ (conceptually)

foreachr e R do
for each s € S that matches probe(l,r.C) do
output r,s pair

Continuing with our Running Example

« Assume R1.C index exists; 2 levels
« Assume RZ2 clustered, unordered

* Assume R1.C index fits in memory

Cost: R2 Reads: 500 I10s

for each R2 tuple:
- probe index - free
- if match, read R1 tuple

=># R1 Reads depends on:
- # matching tuples
- clustering index or not

What is expected # of matching tuples?

(a) say R1.C is key, R2.C is foreign key
then expected = 1 tuple

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 =2

What is expected # of matching tuples?

(c) Say DOM(R1, C) = 1,000,000
T(R1) = 10,000

with assumption of uniform distribution
iIn domain

Expected = 10,000 = 1 tuples

1,000,000 100

Total cost with Index Join with a Non-
Clustering Index

(a) Total cost = 500+5000(1) = 5,500

(b) Total cost = 500+5000(2) = 10,500

(c) Total cost = 500+5000(1/100) = 550

Will any of these change if we have a
clustering index?

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

« Keep root + 99 leaf nodes in memory
» Expected cost of each index access is

E=(0)29 +(1)101 ~0.5
200 200

Total cost (including Index Probes)

= 500+5000 [Probe + Get Records]
= 500+5000 [0.5+2]
=500+12,500 = 13,000 (Case b)

For Case (c):
= 500+5000[0.5 x 1 + (1/100) x 1]
= 500+2500+50 = 3050 I0s

Block-Based NLJ Vs. Indexed NLJ

* Wrt #joining records
* Wrt index clustering

Join Plot graphs for Block NLJ and Indexed NLJ
cost for clustering and non-clustering indexes

Join selectivity

>

Sort-Merge Join with Indexes

« Can avoid sorting
« Zig-zag join

So far

D " NLJ R2P><]R1 55,000 (best)
1 Merge Join

= { Sort+ Merge Join

= R1.C Index

= . R2.C Index

'NLJ R2 D<]R1 5500
D Merge join 1500
T < Sort+Merge Join 7500 — 4500
3 R1.C Index 5500, 3050, 550
| R2.C Index

Building Indexes on the fly for Joins

« Hash join (conceptual)
— Hash function h, range 1 — k
— Buckets for R1: G1, G2, ... Gk
— Buckets for R2: H1, H2, ... Hk

Algorithm
(1) Hash R1 tuples into G1--Gk
(2) Hash R2 tuples into H1--HKk
(3) Fori=1tokdo
Match tuples in Gi, Hi buckets

Example Continued: Hash Join

 R1, R2 contiguous
— Use 100 buckets
— Read R1, hash, + write buckets

S >
P
Ty —>
S 1 0 0
T Atd
) T - -
555555 - -
- -
R

10 blocks

-> Same for R2

-> Read one R1 bucket; build memory hash table
R1 is called the build relation of the hash join]

-> Read corresponding R2 bucket + hash probe
R2 is called the probe relation of the hash join]

02 — | W R2
R1 V77 % % ‘/
) 3
: Memory

Then repeat for all buckets

Cost:
“"Bucketize:” Read R1 + write

Read R2 + write
Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

Minimum Memory Reguirements

Size of R1 bucket = (x/k)
K = number of buckets (k = M-1)
X = number of R1 blocks

So... (xkk)<=k D k>=Vx > M>X

Actually, M > Vmin(B(R),B(S))
[Vs. M > VB(R)+B(S) for Sort-Merge Join]

Trick: keep some buckets in memory

E.g., kK'=33
memory
_ G1
in
R1 2 G

| _—
/

31

R1 buckets = 31 blocks
keep 2 in memory

Memory use:
G1 31 buffers
G2 31 buffers
Output 33-2 buffers
R1 input 1
T Total 94 buffers
6 buffers to spare!!

33-2=31

called Hybrid Hash-Join

Next: Bucketize R2
— R2 buckets =500/33= 16 blocks

— Two of the R2 buckets joined immediately
with G1,G2

memory
R2 buckets R1 buckets
G1) A \ A
(A
R2 | o .
R 7 G2 T T
9 -
/ A 133-2=31 — 33-2=31
7/ - |

Finally: Join remaining buckets

— for each bucket pair:
 read one of the buckets into memory
« join with second bucket

memory

one full R2 R2 buckets
out bucket N R1 buckets
ans 7% / \ A
D— Y Gi 16 [31 \

o\ -

7. |\ i i
— = .

one R1
buffer

Cost
 Bucketize R1 = 1000+31x31=1961

* To bucketize R2, only write 31 buckets:
so, cost = 500+31x16=996

* To compare join (2 buckets already done)
read 31x31+31x16=1457

Total cost = 1961+996+1457 = 4414

How many Buckets in Memory?

memory memory
R1 | N | G rR1 | N
> % —_— % G]_
G2 OR
% %

& See textbook for an interesting answer ...

Another hash join trick:

* Only write into buckets
<val,ptr> pairs

* When we get a match in join phase,
must fetch tuples

* To illustrate cost computation, assume:
— 100 <val,ptr> pairs/block
— expected number of result tuples is 100

 Build hash table for R2 in memory
5000 tuples — 5000/100 = 50 blocks

« Read R1 and match
« Read ~ 100 R2 tuples

Total cost = Read R2: 500
Read R1: 1000
Get tuples: 100

1600

So far:

clustered

[NLJ
Merge join
Sort+merge joint
R1.C index
R2.C index
Build R.C index
Build S.C index
Hash join
with trick,R1 first
with trick,R2 first

| Hash join, pointers

5500

1500
7500
5500 — 550

4500
4414

1600

Hash-based Vs. Sort-based Joins

Some similarities (see textbook), some
dissimilarities

Non-equi joins

Memory requirement

Sort order may be useful later

Summary

* NLJ ok for “small” relations
(relative to memory size)

* For equi-join, where relations not
sorted and no indexes exist,
Hybrid Hash Join usually best

Summary (contd.)

» Sort-Merge Join good for
non-equi-join (e.g., R1.C > R2.C)

* |f relations already sorted, use
Merge Join
* |f index exists, it could be useful

— Depends on expected result size and index
clustering

 Join techniques apply to Union,
Intersection, Difference

Buffer Management

« DBMS Buffer Manager

Read/write

!

Buffer Manager

!

Block read/write

-

* May control memory directly (i.e., does not
allocate from virtual memory controlled by OS)

Buffer Replacement Policies

Least Recently Used (LRU)
Second-chance

Most Recently Used (MRU)
FIFO

Interaction between Operators and
Buffer Management

 Memory (our M parameter) may change
while an operator is running

* Some operators can take advantage of
specific buffer replacement policies

—E.g., Rocking for Block-based NLJ

Join Strategies for Parallel Processors

* May cover later if time permits
* We will see one example: Hash Join

R1 D774 —
Y
Y R1

/ R2

DN

Memory R2’s Hash partitions

R1’s Hash partitions

Textbook Material

 All of Chapter 15 except 15.8
— 15.8 covers multi-pass sort and hash

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

