
CPS160
Perl Tutorial 1

Abrita Chakravarty
Department of Computer Science

Duke University

Material adapted after Pallavi Pratapa, Jason Stajich, and Raluca
Gordan (former CPS160 TAs)

Outline

•  Variables
•  Scalars: strings and numbers
•  Arrays
•  Hashes

•  Conditionals and loops

•  File handling

•  References

First Perl Program
use strict;
use warnings;
use cps160lib;

my @numbers = (12, 34, 54, 2, 423, -14);

my $minval = min(@numbers);# find minimum in the array
my $maxval = max(@numbers);# find maximum in the array

print "The array of numbers is (@numbers).\n";
print "The minimum value is: $minval.\n";

exit;

Coding Practices
•  Put use strict; and use warnings;

at the beginning of your programs
•  strict requires variables to be declared before use
•  my $var = 3;
•  my prevents context problems with multiple declarations

•  warnings provides warning messages to help debug

•  Put use cps160lib; for helper code in cps160

•  ALWAYS comment your code (# starts a comment)

First Perl Program
use strict;
use warnings;
use cps160lib;

my @numbers = (12, 34, 54, 2, 423, -14);

my $minval = min(@numbers);# find minimum in the array
my $maxval = max(@numbers);# find maximum in the array

print "The array of numbers is (@numbers).\n";
print "The minimum value is: $minval.\n";

exit;

Perl Variables
•  Scalar: $var
•  Strings:
•  $var1 = ‘literal’;
•  $var2 = “interpolate variable”;

•  Numbers:
•  $num1 = 214; $num2 = 0.002; $num3 = 2e-3;

•  Array: @array

•  Associative array or hash: %hash

•  Note: case sensitivity; $var different from $Var

Strings
•  Quotes
•  single quotes (exactly as typed)
•  ‘literally $3.00 $var’

•  double quotes (substitutes values for variables)
•  “value = $var\n”

•  back quotes (execute commands in shell)
•  `dir`, `ls`

•  Formatting
•  $str = sprintf(“%s %.2f”, ‘formatting’,9);

String Functions

•  Uppercase, lowercase
•  $CAPS = uc($word);
•  $small = lc($WORD);

•  Equality
•  if($a eq $b) {...}

•  Length
•  $len = length($str);

•  Substring
•  $partOfString = substr($str, 3, 5);

String Functions (Contd.)

•  Index of a substring
•  $index = index($str, "b");

•  Concatenate two strings
•  $sum = $part1 . $part2;
•  (do not use "+" to concatenate strings!)

•  Reverse a string
•  $revstr = reverse($str);

Manipulating Strings

•  Append to a string:
•  $str .= "stuff to add at the end";

•  Remove the end if it is whitespace:
•  chomp($str);
•  Also removes new-line character (enter/return)

•  Concatenate text that crosses several lines:
•  $str = "This is a long sentence that ”
 ."continues onto more than one line."

Numeric Variables and
Operators

•  Integers
•  $num = 2030

•  Floating points
•  $float = 0.400323

•  Scientific notation
•  $evalue = 1.32e-23

•  Basic Arithmetic

•  +,-,/,*

•  Power **

•  log() (base e)

•  Increment/decrement

•  $var++, $var–-

•  ++$var, --$var

•  Assignment

•  $a += 3;

•  $num /= $num2;

Operator Precedence and
Associativity

•  Precedence: some operators evaluated before others.
•  2 + 4 * 5 = 2 + 20 = 22
•  not (2 + 4) * 5 = 6 * 5 = 30

•  Associativity: order of evaluating multiple occurrences of same
operator
•  Left associativity:
•  72 / 12 / 3 = (72 / 12) / 3 = 6 / 3 = 2
•  not 72 / (12 / 3) = 72 / 4 = 18

•  Right associativity:
•  2 ** 3 ** 4 = 2 ** (3 ** 4) = 2 ** 81 = 2.41e+24
•  not (2 ** 3) ** 4 = 8 ** 4 = 4096

•  Examples: ex1a.pl, ex1b.pl

Arrays and Lists
•  Array variables start with @

•  An array holds a list of items; we can mix types (numbers,
strings, objects, even other arrays).
•  @array = ('banana', 'apple’, 200);

•  Arrays are automatically resized.
•  $array[1000] = '1';

•  Get the 3rd item in the array
•  when referencing an element of an array, you use $, not @
•  $item = $array[2];

•  Get a slice of an array
•  @newarray = @array[0..3];

Array Functions
•  Remove last item
•  $item = pop @array;

•  Add to the end
•  push @array,$item;

•  Remove 1st item
•  $item = shift @array;

•  Add to the front
•  unshift @array,$item;

•  Reverse order of elements
•  @revarray = reverse @array;

Array Size

•  Use scalar, not length to determine the
number of items in an array
•  scalar() returns the size of an array:
•  $array_size = scalar(@array);

•  length() returns the number of characters in a
string:

•  $string_length = length($string);

From String to Array and
Back

•  Turn a string into an array; Use a delimiter
•  @words = split(" ","the quick brown fox”)

•  Turn and array into a string
•  $str = join(" ", @words)

•  Make an array of strings quickly
•  @spring_months = qw(Mar Apr May);

Context in Perl

•  Perl tries to be clever

•  Will do different things depending on context, so
you must be careful !

•  $length = @array;

•  ($first_element) = @array;

•  ($first, $second) = @array;

•  Example: ex2.pl, ex3.pl

Associative Arrays or
Hashes

•  Key => value pairs

•  Similar to arrays, except that can use meaningful
strings to index, rather than just integers

•  No implicit order

•  %hash

Manipulating Hashes
•  Add a key, value pair
•  $hash{'Y'} = 'You';

•  Initialize at once
•  %hash = ('Y' => 'You', ‘M' => 'Me');

•  Remove a value
•  delete $hash{'A'};

•  Test if a key has been set
•  if(exists $hash{'P'}) {}

•  Test if a key has been set and has been defined
•  if(defined $hash{'P'}) {}

Hash Functions

•  Get the keys
•  my @keys = keys %hash;

•  Get the values
•  my @values = values %hash;

•  Loop through both
•  while(my($key,$value) = each %hash)
{…}

•  Example: ex4.pl

Conditionals and Loops
•  if(something) { something is true }

•  elsif(something else) { something else is true }

•  else{ neither something nor something else are
true }

•  while(boolean){}

•  until(!boolean){}

•  for(initialize; booleantest; incr/decr){}

•  foreach $var (@list){}

Boolean operators

•  Equivalent
•  numeric: ==
•  characters: eq

•  and (&&, and), or (||, or), not (!, not)

•  unless is !if
•  if (!$a){} is the same as
•  unless ($a){}

Input / Output Streams

•  STDOUT, STDERR output streams

•  STDOUT is the default if no output stream is specified
•  print "an error occurred\n";
•  print STDERR "an error occurred\n";

•  STDIN input stream
$filename = <STDIN>;

chomp($filename);
print "Filename: ";

Input Filehandles

•  Open a file for reading; use “< ”
•  open(IN, "<$filename”)

•  Example:
open(IN, “<$filename”) || die("error\n");

while (my $line = <IN>)

{ print "line is $line“; }

close(IN);

•  Filehandles used with the Diamond operator < > when
assigning to a variable

Output Filehandles

•  Use ">” to create a new file (or overwrite text in an
existing file) , and ">>” to append to end of a file.

open(FH, ">filename") || die($!);

print FH “Writing a line to file\n”;

close(FH);

•  $! contains a human readable error message.

Program Inputs in CPS160
•  STDIN: my $filename = <STDIN>;

•  FILE: open(IN, "<$filename”)
•  Input files: *.fasta, *.txt
•  Read in a line and parse it
open(IN, $filename) || die("error\n");
while (my $line = <IN>)
{
 my @wordArray = split(“ ”,$line);
}
close(IN);

•  Helper code provided: cps160lib.pm(getfasta), tidy.pl

•  Example: ex5.pl

References

•  Represent memory addresses of variables (pointers)

•  References:
•  leading \
•  [] for arrays
•  {} for hashes

•  Note: These are used for slightly different things
•  $ref = \$var;
•  $aref= \@array; $arrayref = [@anonArray];
•  $href= \%hash; $hashref = {%anonHash};

References with []

•  Itʼs ok to write:
•  @array = ($a, $b, $c);
•  $goodref= \@array;

•  But
•  $badref= \($a, $b, $c);
is the same thing as
•  $badref= (\$a, \$b, \$c);

•  A reference to an anonymous array:
•  $goodref= [$a, $b, $c];

Data Structures

•  References can be used to create complicated
data structures.

•  A simple example: a matrix is an array of
references to arrays:
 my @matrix = ([67, 78, 98],
 [99, 95, 82]);

•  Arrays of hashes, hashes of arrays, hashes of
hashes …

•  Note: references cannot be used as hash keys!

De-referencing
•  Get the data from the reference

•  Have to know what was stored (scalar, array, or
hash)

•  Get back the scalar, array or hash
•  $$scalarref, @$arrayref, %$hashref

•  Use the reference to get an array or hash element
•  $arrayref->[2]; $hashref->{“key2”}

•  Example: ex6.pl

Further Reading

•  http://www.cs.duke.edu/courses/fall10/cps160/
resources.html

•  Online resources
•  http://perldoc.perl.org/
•  http://www.perl.org/books/beginning-perl/

•  Textbook
•  Beginning Perl, Second Edition, James Lee

