
CPS216: Data-Intensive

Computing Systems

Query Processing (contd.)

Shivnath Babu

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

logical query plan statistics

physical query plan

Query

Optimization

Query

Execution

Overview of

Query

Processing

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

logical query plan statistics

physical query plan

Initial logical plan

“Best” logical plan

Logical plan

Rewrite rules

Query Rewriting

B,D

R.A = “c” Λ R.C = S.C

X

R S

B,D

R.A = “c”

X

R S

R.C = S.C

We will revisit it towards the end of this lecture

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

Best logical query plan statistics

Best physical query plan

Physical Plan Generation

B,D

R.A = “c”

R

S

Natural join

Best logical plan
R S

Index scan Table scan

Hash join

Project

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

Best logical query plan statistics

Best physical query plan

Enumerate possible

physical plans

Find the cost of

each plan

Pick plan with

minimum cost

Physical Plan Generation

 Logical Query Plan

 P1 P2 …. Pn

 C1 C2 …. Cn

 Pick minimum cost one

Physical

plans

Costs

Plans for Query Execution

• Roadmap

– Path of a SQL query

– Operator trees

– Physical Vs Logical plans

– Plumbing: Materialization Vs pipelining

Logical Plans Vs. Physical Plans

B,D

R.A = “c”

R

S

Natural join

Best logical plan
R S

Index scan Table scan

Hash join

Project

B,D

R.A = “c”

R

S

Operator Plumbing

• Materialization: output of one operator written to

disk, next operator reads from the disk

• Pipelining: output of one operator directly fed to

next operator

B,D

R.A = “c”

R

S

Materialization

Materialized here

B,D

R.A = “c”

R

S

Iterators: Pipelining

 Each operator supports:

• Open()

• GetNext()

• Close()

Iterator for Table Scan (R)

Open() {

 /** initialize variables */

 b = first block of R;

 t = first tuple in block b;

}

GetNext() {

 IF (t is past last tuple in block b) {

 set b to next block;

 IF (there is no next block)

 /** no more tuples */

 RETURN EOT;

 ELSE t = first tuple in b;

 }

 /** return current tuple */

 oldt = t;

 set t to next tuple in block b;

 RETURN oldt;

}

Close() {

 /** nothing to be done */

}

Iterator for Select

Open() {

 /** initialize child */

 Child.Open();

}

GetNext() {

 LOOP:

 t = Child.GetNext();

 IF (t == EOT) {

 /** no more tuples */

 RETURN EOT;

 }

 ELSE IF (t.A == “c”)

 RETURN t;

 ENDLOOP:

}

Close() {

 /** inform child */

 Child.Close();

}

R.A = “c”

Iterator for Sort

Open() {

 /** Bulk of the work is here */

 Child.Open();

 Read all tuples from Child

 and sort them

}

GetNext() {

 IF (more tuples)

 RETURN next tuple in order;

 ELSE RETURN EOT;

}

Close() {

 /** inform child */

 Child.Close();

}

R.A

• TNLJ (conceptually)

 for each r  Lexp do

 for each s  Rexp do

 if Lexp.C = Rexp.C, output r,s

Iterator for Tuple Nested Loop Join

Lexp Rexp

Example 1: Left-Deep Plan

R1(A,B)

TableScan

R2(B,C)

TableScan

R3(C,D)

TableScan

TNLJ

TNLJ

Question: What is the sequence of getNext() calls?

Example 2: Right-Deep Plan

R3(C,D)

TableScan

TNLJ

R1(A,B)

TableScan

R2(B,C)

TableScan

TNLJ

Question: What is the sequence of getNext() calls?

Cost Measure for a Physical Plan

• There are many cost measures

– Time to completion

– Number of I/Os (we will see a lot of this)

– Number of getNext() calls

• Tradeoff: Simplicity of estimation Vs.

Accurate estimation of performance as

seen by user

Why do we need Query Rewriting?

• Pruning the HUGE space of physical plans

– Eliminating redundant conditions/operators

– Rules that will improve performance with very

high probability

• Preprocessing

– Getting queries into a form that we know how

to handle best

 Reduces optimization time drastically without

 noticeably affecting quality

Some Query Rewrite Rules

• Transform one logical plan into another

– Do not use statistics

• Equivalences in relational algebra

• Push-down predicates

• Do projects early

• Avoid cross-products if possible

Equivalences in Relational Algebra

R S = S R Commutativity

(R S) T = R (S T) Associativity

Also holds for: Cross Products, Union, Intersection

R x S = S x R

(R x S) x T = R x (S x T)

R U S = S U R

R U (S U T) = (R U S) U T

Apply Rewrite Rule (1)

B,D [R.C=S.C [R.A=“c”(R X S)]]

B,D

R.A = “c” Λ R.C = S.C

X

R S

B,D

R.A = “c”

X

R S

R.C = S.C

Rules: Project

Let: X = set of attributes

 Y = set of attributes

 XY = X U Y

xy (R) =

x [y (R)]

Let p = predicate with only R attribs

 q = predicate with only S attribs

 m = predicate with only R,S attribs

p (R S) =

q (R S) =

Rules:  + combined

 [p (R)] S

 R [q (S)]

Apply Rewrite Rule (2)

B,D [R.C=S.C [R.A=“c”(R)] X S]

B,D

R.A = “c”

X

R

S

R.C = S.C

B,D

R.A = “c”

X

R S

R.C = S.C

Apply Rewrite Rule (3)

B,D [[R.A=“c”(R)] S]

B,D

R.A = “c”

R

S

B,D

R.A = “c”

X

R

S

R.C = S.C
Natural join

Rules:  + combined (continued)

pq (R S) = [p (R)] [q (S)]

pqm (R S) =

 m [(p R) (q S)]

pvq (R S) =

 [(p R) S] U [R (q S)]

p1p2 (R)  p1 [p2 (R)]

p (R S)  [p (R)] S

R S  S R

x [p (R)]  x {p [xz (R)]}

Which are “good” transformations?

Conventional wisdom: do projects early

Example: R(A,B,C,D,E)

 P: (A=3)  (B=“cat”)

E {p (R)} vs. E {p{ABE(R)}}

 But: What if we have A, B indexes?

B = “cat” A=3

 Intersect pointers to get

 pointers to matching tuples

Bottom line:

• No transformation is always good

• Some are usually good:

– Push selections down

– Avoid cross-products if possible

– Subqueries  Joins

Avoid Cross Products (if possible)

• Which join trees avoid cross-products?

• If you can't avoid cross products, perform
them as late as possible

Select B,D

From R,S,T,U

Where R.A = S.B 

R.C=T.C  R.D = U.D

More Query Rewrite Rules

• Transform one logical plan into another

– Do not use statistics

• Equivalences in relational algebra

• Push-down predicates

• Do projects early

• Avoid cross-products if possible

• Use left-deep trees

• Subqueries  Joins

• Use of constraints, e.g., uniqueness

