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Query Rewriting 

B,D 
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We will revisit it towards the end of this lecture  
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Physical Plan Generation 
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Plans for Query Execution 

• Roadmap 

– Path of a SQL query 

– Operator trees 

– Physical Vs Logical plans 

– Plumbing: Materialization Vs pipelining 



Logical Plans Vs. Physical Plans 
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Operator Plumbing 

• Materialization: output of one operator written to 

disk, next operator reads from the disk  

• Pipelining: output of one operator directly fed to 

next operator 
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Iterators: Pipelining 

 Each operator supports: 

• Open() 

• GetNext() 

• Close() 



Iterator for Table Scan (R) 

Open() { 

  /** initialize variables */ 

  b = first block of R; 

  t = first tuple in block b; 

} 

GetNext() { 

  IF (t is past last tuple in block b) { 

      set b to next block; 

      IF (there is no next block) 

          /** no more tuples */ 

          RETURN EOT; 

      ELSE t = first tuple in b;      

  } 

  /** return current tuple */ 

  oldt = t; 

  set t to next tuple in block b; 

  RETURN oldt; 

} 

Close() { 

  /** nothing to be done */ 

} 



Iterator for Select 

Open() { 

  /** initialize child */ 

  Child.Open(); 

} 

GetNext() { 

  LOOP:  

      t = Child.GetNext(); 

      IF (t == EOT) { 

        /** no more tuples */ 

        RETURN EOT; 

      }    

      ELSE IF (t.A == “c”) 

        RETURN t; 

  ENDLOOP: 

} 

Close() { 

  /** inform child */ 

  Child.Close(); 

} 

R.A = “c” 



Iterator for Sort 

Open() { 

  /** Bulk of the work is here */ 

  Child.Open(); 

  Read all tuples from Child  

     and sort them 

} 

GetNext() { 

   IF (more tuples) 

      RETURN next tuple in order; 

   ELSE RETURN EOT; 

} 

Close() { 

  /** inform child */ 

  Child.Close(); 

} 

R.A 



• TNLJ  (conceptually) 

  for each r  Lexp do 

      for each s  Rexp do 

   if Lexp.C = Rexp.C, output r,s 

Iterator for Tuple Nested Loop Join 

Lexp Rexp 



Example 1: Left-Deep Plan 
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Question: What is the sequence of getNext() calls?  



Example 2: Right-Deep Plan 
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Question: What is the sequence of getNext() calls?  



Cost Measure for a Physical Plan 

• There are many cost measures 

– Time to completion 

– Number of I/Os (we will see a lot of this) 

– Number of getNext() calls 

• Tradeoff: Simplicity of estimation Vs. 

Accurate estimation of performance as 

seen by user 



Why do we need Query Rewriting? 

• Pruning the HUGE space of physical plans 

– Eliminating redundant conditions/operators 

– Rules that will improve performance with very 

high probability 

• Preprocessing 

– Getting queries into a form that we know how 

to handle best 

 Reduces optimization time drastically without  

     noticeably affecting quality  



Some Query Rewrite Rules 

• Transform one logical plan into another 

– Do not use statistics 

• Equivalences in relational algebra 

• Push-down predicates 

• Do projects early 

• Avoid cross-products if possible 



Equivalences in Relational Algebra 

R   S = S R   Commutativity 

(R  S)   T = R (S   T)   Associativity  

Also holds for: Cross Products, Union, Intersection 

R x S = S x R 

(R x S) x T = R x (S x T) 

R U S = S U R 

R U (S U T) = (R U S) U T 



Apply Rewrite Rule (1) 

B,D [ R.C=S.C [R.A=“c”(R X S)]] 

B,D 

R.A = “c” Λ R.C = S.C 
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R.C = S.C 



Rules: Project 

Let: X = set of attributes 

  Y = set of attributes 

  XY = X U Y 

xy (R) =  

 

x [y (R)]  

 



Let p = predicate with only R attribs 

   q = predicate with only S attribs 

   m = predicate with only R,S attribs 

 

p (R      S) =  

q (R      S) =    

Rules:   +      combined  

 [p (R)]      S 

  R      [q (S)]   



Apply Rewrite Rule (2) 

B,D [ R.C=S.C [R.A=“c”(R)] X S] 

B,D 

R.A = “c” 

X 
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S 

R.C = S.C 

B,D 
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Apply Rewrite Rule (3) 

B,D [[R.A=“c”(R)]       S] 

B,D 

R.A = “c” 

R 

S 

B,D 

R.A = “c” 

X 

R 

S 

R.C = S.C 
Natural join 



Rules:   +      combined  (continued) 

pq (R      S)  = [p (R)]      [q (S)] 

pqm (R      S) =  

   m [(p R)      (q S)] 

pvq (R      S) =  

  [(p R)     S] U [R    (q S)]  



p1p2 (R)  p1 [p2 (R)]  

p (R     S)  [p (R)]       S 

R      S     S       R 

x [p (R)]  x {p [xz (R)]} 

Which are “good” transformations? 



Conventional wisdom: do projects early 

Example: R(A,B,C,D,E) 

           P: (A=3)  (B=“cat”) 

 

E {p (R)}    vs.   E {p{ABE(R)}}   
 

 
 



 But: What if we have A, B indexes? 

B = “cat”                                A=3 

 

 

 

    Intersect pointers to get 

    pointers to matching tuples 



Bottom line: 

• No transformation is always good 

• Some are usually good:  

– Push selections down 

– Avoid cross-products if possible 

– Subqueries  Joins 



Avoid Cross Products (if possible) 

• Which join trees avoid cross-products? 

• If you can't avoid cross products, perform 
them as late as possible 

Select B,D 

From R,S,T,U 

Where R.A = S.B   

R.C=T.C  R.D = U.D  



More Query Rewrite Rules 

• Transform one logical plan into another 

– Do not use statistics 

• Equivalences in relational algebra 

• Push-down predicates 

• Do projects early 

• Avoid cross-products if possible 

• Use left-deep trees 

• Subqueries  Joins  

• Use of constraints, e.g., uniqueness 


