CPS216: Data-Intensive
Computing Systems

Query Processing (contd.)

Shivnath Babu

Overview of] SQL query
Query
Processing arse roe

Query rewriting

statlstlcs logical query plan

Phy5|cal plan g@

physical query plan

} Query

l result Execution

Query
Optimization

Rewrite rules

Logical plan
“Best” logical plan

l parse tree

Query rewriting

l logical query plan

Physical plan g@

l physical query plan

l result

statistics

Query Rewriting

Tl p 8.
‘ Orc=sc
OrA="¢’ARC=SC j>
‘ OrA=*c
X
RN
R S R/ X\S

We will revisit it towards the end of this lecture

l SQL query

l parse tree

Query rewriting

statistics l Best logical query plan

Physical plan g@

l Best physical query plan

l result

Physical Plan Generation

s p Project

><] Natural join E Hash join
Or A{c A - N
' ‘ S Index scan Taple scan
o \
R S

Best logical plan

l SQL query

l parse tree

Query rewriting

statistics l Best logical query plan

/Enumerate possible
physical plans

Physical plan g@ <

l Best physical query plan

Find the cost of
each plan

Pick plan with
minimum cost

l result

-

Physical Plan Generation

Logical Query Plan

T }

Physical
P1 P2 ... Pn olans
\ \ \
Cl c2 ... Ch } Costs

T

Pick minimum cost one

Plans for Query Execution

 Roadmap
— Path of a SQL query
— Operator trees
— Physical Vs Logical plans
— Plumbing: Materialization Vs pipelining

Logical Plans Vs

. Physical Plans

Mg b

N Natural join

GR.A{“C" A S

R

Best logical plan

Project

Hash join

N

Index scan

R

Table scan

S

Operator Plumbing

GR.A{“C” \ S

R

- Materialization: output of one operator written to
disk, next operator reads from the disk

 Pipelining: output of one operator directly fed to
next operator

Materialization

Materialized here TCB,D

Iterators: Pipelining

g p
\ =» Each operator supports:
/N * Open()
AN » GetNext()
OrA=“ S * Close()

Iterator for Table Scan (R)

Open() {
[** initialize variables */ GetNext() {
b = first block of R; IF (t is past last tuple in block b) {
t = first tuple in block b; set b to next block;
} IF (there is no next block)
[** no more tuples */
RETURN EOT,;
ELSE t = first tuple in b;
}
[** return current tuple */
oldt =t;
Close() { set t to next tuple in block b;
/** nothing to be done */ RETURN oldt;

} }

Iterator for Select

OrA="¢

Open() {

}

[** Initialize child */
Child.Open();

Close() {

}

[** Inform child */
Child.Close();

GetNext() {
LOOP:
t = Child.GetNext();
IF (t == EOT) {
[** no more tuples */
RETURN EOT;
}
ELSE IF (t.A=="Cc")
RETURN f;
ENDLOOP:

}

Iterator for Sort

T
A GetNext() {
IF (more tuples)
RETURN next tuple in order;
ELSE RETURN EOT;
}
Open() {
/** Bulk of the work is here */
Child.Open(): Close() {

[** iInform child */

Read all tuples from Child _
Child.Close();

and sort them

1 }

Iterator for Tuple Nested Loop Join

Y
7N
Lex?///\\\ ///\\<?exp

 TNLJ (conceptually)
for each r € Lexp do
for each s € Rexp do
If Lexp.C = Rexp.C, outputr,s

Example 1: Left-Deep Plan

TLJ

/ TableScan

TNLJ

/ ~__ RBJC,D)

TableScan TableScan

R1(A,B) R2(B,C)

Question: What is the sequence of getNext() calls?

Example 2: Right-Deep Plan

TNLJ

>
/ \
TableScan TNLJ
>

TableScan TableScan

R1(A,B) R2(B,C)

Question: What is the sequence of getNext() calls?

Cost Measure for a Physical Plan

* There are many cost measures
— Time to completion
— Number of I/0s (we will see a lot of this)
— Number of getNext() calls

» Tradeoff: Simplicity of estimation Vs.
Accurate estimation of performance as
seen by user

Why do we need Query Rewriting?

Pruning the HUGE space of physical plans

— Eliminating redundant conditions/operators

— Rules that will improve performance with very
high probability

Preprocessing

— Getting gqueries into a form that we know how
to handle best

=» Reduces optimization time drastically without
noticeably affecting quality

Some Query Rewrite Rules

Transform one logical plan into another
— Do not use statistics

Equivalences in relational algebra
Push-down predicates

Do projects early

Avoid cross-products If possible

Equivalences in Relational Algebra

R[I><IS= SBJIR Commutativity
(RD><IS)>AIT=RD><1(S>1T) Associativity

Also holds for: Cross Products, Union, Intersection

RxS=SxR
(RXxS)XT=RX(SxT)
RUS=SUR
RUGUT)=(RUS)UT

Apply Rewrite Rule (1)

Mg b
|

OrRA=z“¢’ ARC=S.C

\
PN
R S

—

Mg b

Orc=sc

OrA="¢

AN

R S

[p [Or.cos.c [Or A= (R X S)]]

Rules: Project

Let: X = set of attributes
Y = set of attributes
XY=XUY

Ty (R) = T FW(R)]

Rules: o +r>< combined

Let p = predicate with only R attribs
g = predicate with only S attribs
m = predicate with only R,S attribs

G,(R<1S)= [O, (R)]>IS
O, (R><S)= R=<1[C, (S)]

Apply Rewrite Rule (2)

g p 8.
\
Orc:=sc — Orc=sc
OrA="¢ X
X cSR.A{“C" \ S
N \
R S R

[p [Or.c=s.c [OrA=(R)] X S]

Apply Rewrite Rule (3)

Mg b
| Mg b
ORc -
R >C j\> N Natural join
RN
X Op £ -«
/ \ R.A=" S

[T p [[Or A= (R)] <1 5]

Rules: o + <1 combined (continued)

Oprg (R>1S) =[Op (R)]><[Oq(S)]
Oprgam (R>IS) =
Om [(Op R)=<1 (Oq S)]

Opvg (R ><1S) =

[(op R)=<s] U [r< (Oq 9)]

Which are “good” transformations?

1 Opinrp2 (R) —» Op1 [Op2 (R)]

- Op (R<IS) > [Op (R)] ><IS
RIS 5 S XXR

0 Tx [Op (R)] —» TUx {Gp [TUxz (R)]}

Conventional wisdom: do projects early

Example: R(A,B,C,D,E)
P: (A=3) A (B="cat”)

Te{Op (R)} vs. Tle{Op{Tree(R)}}

But: What if we have A, B indexes?

B ="“cat” A=3

\ A/

./

Intersect pointers to get

pointers to matching tuples

Bottom line:

* No transformation is always good

« Some are usually good:
— Push selections down
— Avold cross-products if possible
— Subqueries - Joins

Avoid Cross Products (if possible)

Select B,D

From R,S, T,U

Where RA=S.B A
R.C=T.CAR.D=U.D

* Which join trees avoid cross-products?

* If you can't avoid cross products, perform
them as late as possible

More Query Rewrite Rules

Transform one logical plan into another
— Do not use statistics

Equivalences in relational algebra
Push-down predicates

Do projects early

Avoid cross-products if possible

Use left-deep trees

Subqueries - Joins

Use of constraints, e.g., unigueness

