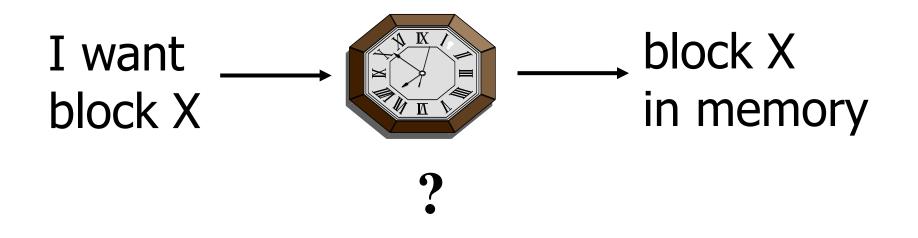

CPS216: Data-Intensive Computing Systems

Data Access from Disks

Shivnath Babu

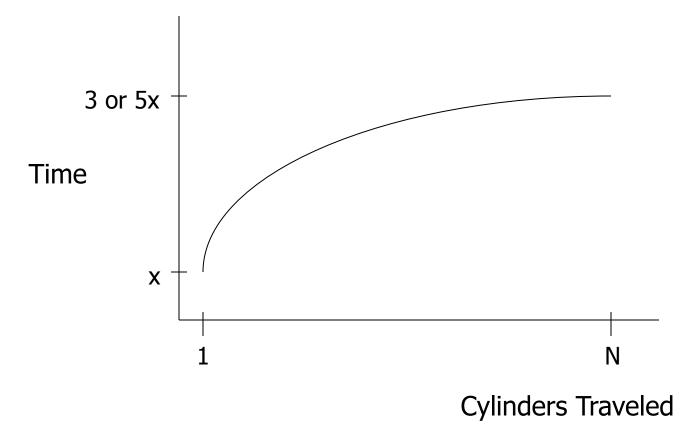
<u>Outline</u>

- Disks
- Data access from disks
- Software-based optimizations
 - Prefetching blocks
 - Choosing the right block size

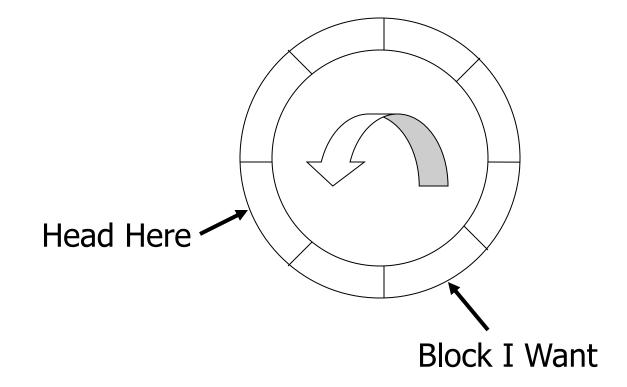

Terms:

Platter, Head, Cylinder, Track Sector (physical), Block (logical), Gap

Block Address:


- Physical Device
- Cylinder #
- Surface #
- Start sector #

Disk Access Time (Latency)


Access Time = Seek Time + Rotational Delay + Transfer Time + Other

Seek Time

Average value: 10 ms \rightarrow 40 ms

Rotational Delay

Average Rotational Delay

R = 1/2 revolution

Example: R = 8.33 ms (3600 RPM)

Transfer Rate: t

- t: 1 \rightarrow 100 MB/second
- transfer time: <u>block size</u>

t

Other Delays

- CPU time to issue I/O
- Contention for controller
- Contention for bus, memory

"Typical" Value: 0

- So far: Random Block Access
- What about: Reading "Next" block?

If we do things right ...

Time to get = <u>Block Size</u> + Negligible next block t

- skip gap
- switch track
- once in a while, next cylinder

Rule ofRandom I/O: ExpensiveThumbSequential I/O: Much less

- Ex: 1 KB Block
 - » Random I/O: ~ 20 ms.

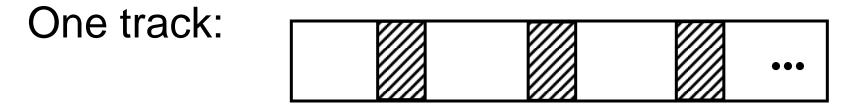
» Sequential I/O: \sim 1 ms.

Cost for Writing similar to Reading

.... unless we want to verify!

To Modify Block:

(a) Read Block(b) Modify in Memory(c) Write Block[(d) Verify?]


A Synthetic Example

- 3.5 in diameter disk
- 3600 RPM
- 1 surface
- 16 MB usable capacity (16 X 2²⁰)
- 128 cylinders
- seek time: average = 25 ms.

adjacent cylinders = 5 ms.

- 1 KB blocks = sectors
- 10% overhead between sectors
- capacity = $16 \text{ MB} = (2^{20})16 = 2^{24} \text{ bytes}$
- # cylinders = $128 = 2^7$
- bytes/cyl = $2^{24}/2^7 = 2^{17} = 128$ KB
- blocks/cyl = 128 KB / 1 KB = 128

3600 RPM → 60 revolutions / sec \rightarrow 1 rev. = 16.66 msec.

Time over useful data:(16.66)(0.9)=14.99 ms. Time over gaps: (16.66)(0.1) = 1.66 ms. Transfer time 1 block = 14.99/128=0.117 ms. Trans. time 1 block+gap=16.66/128=0.13ms.

<u>Burst Bandwith</u> 1 KB in 0.117 ms.

BB = 1/0.117 = 8.54 KB/ms.

or

BB =8.54KB/ms x 1000 ms/1sec x 1MB/1024KB = 8540/1024 = 8.33 MB/sec

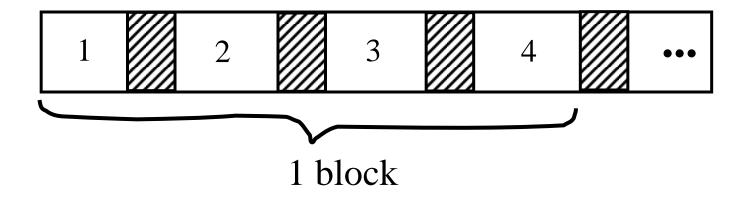
Sustained bandwith (over track) 128 KB in 16.66 ms.

SB = 128/16.66 = 7.68 KB/ms

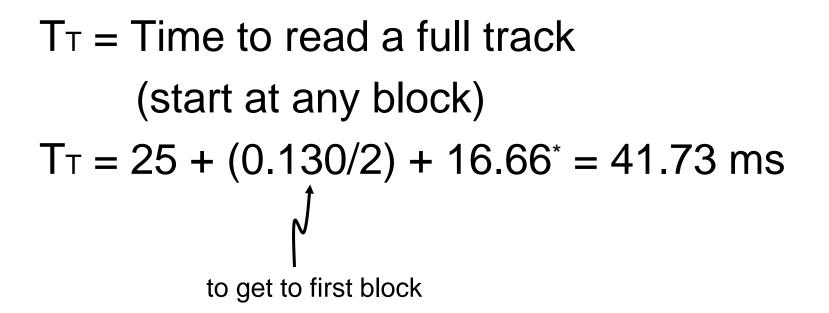
or

SB = 7.68 x 1000/1024 = 7.50 MB/sec.

T_1 = Time to read one random block


 $T_1 = seek + rotational delay + TT$

= 25 + (16.66/2) + .117 = 33.45 ms.


A Back of Envelope Calculation

- Suppose it takes 25 ms to read one 1 KB block
- 10 tuples of size 100 bytes each fit in 1 block
- How much time will it take to read a table containing 1 Million records (say, Amazon's customer database)?

Suppose DBMS deals with 4 KB blocks

$$T_4 = 25 + (16.66/2) + (.117) \times 1$$

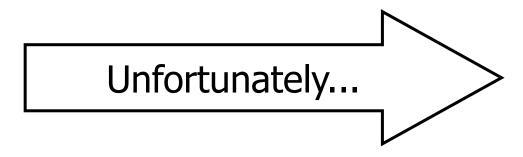
+ (.130) X 3 = 33.83 ms
[Compare to $T_1 = 33.45$ ms]

* Actually, a bit less; do not have to read last gap.

<u>Outline</u>

- Disks
- Data access from disks
- Software-based optimizations
 - Prefetching blocks
 - Choosing the right block size

Software-based Optimizations (in Disk controller, OS, or DBMS Buffer Manager)


- Prefetching blocks
- Choosing the right block size
- Some others covered in Garcia-Molina et al. book

Prefetching Blocks

- Exploits locality of access
 Ex: relation scan
- Improves performance by hiding access latency
- Needs extra buffer space
 - Double buffering

Block Size Selection?

• Big Block \rightarrow Amortize I/O Cost

• Big Block \Rightarrow Read in more useless stuff!

Tradeoffs in Choosing Block Size

- Small relations?
- Update-heavy workload?
- Difficult to use blocks larger than track
- Multiple block sizes