
CPS216: Data-intensive

Computing Systems

Query Optimization (Cost-

based optimization)

Shivnath Babu

Query Optimization Problem

Pick the best plan from the space of

physical plans

Cost-Based Optimization

• Prune the space of plans using heuristics

• Estimate cost for remaining plans

– Be smart about how you iterate through plans

• Pick the plan with least cost

Focus on queries with joins

Heuristics for pruning plan space

• Predicates as early as possible

• Avoid plans with cross products

• Only left-deep join trees

Physical Plan Selection

 Logical Query Plan

 P1 P2 …. Pn

 C1 C2 …. Cn

 Pick minimum cost one

Physical

plans

Costs

Review of Notation

• T (R) : Number of tuples in R

• B (R) : Number of blocks in R

Simple Cost Model

Cost (R S) = T(R) + T(S)

All other operators have 0 cost

Note: The simple cost model used for illustration only

Cost Model Example

R S

T

X

T(R) + T(S)

T(X) + T(T)

Total Cost: T(R) + T(S) + T(T) + T(X)

Selinger Algorithm

• Dynamic Programming based

• Dynamic Programming:

– General algorithmic paradigm

– Exploits “principle of optimality”

– Useful reading:

• Chapter 16, Introduction to Algorithms,

Cormen, Leiserson, Rivest

Principle of Optimality

Optimal for “whole” made up from

optimal for “parts”

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5
Optimal Plan:

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5
Optimal Plan:

Optimal plan for joining R3, R2, R4, R1

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5
Optimal Plan:

Optimal plan for joining R3, R2, R4

Exploiting Principle of Optimality

Query: R1 R2 … Rn

R3 R1

R2

R2 R3

R1

Optimal

for joining R1, R2, R3

Sub-Optimal

for joining R1, R2, R3

Exploiting Principle of Optimality

R3 R1

R2

Ri

Rj

Sub-Optimal

for joining R1,…,Rn

A sub-optimal sub-plan cannot lead to an

optimal plan

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

Notation

OPT ({ R1, R2, R3 }):

Cost of optimal plan to join R1,R2,R3

T ({ R1, R2, R3 }):

Number of tuples in R1 R2 R3

OPT ({ R1, R2, R3 }):

OPT ({ R2, R3 }) + T ({ R2, R3 }) + T(R1)

OPT ({ R1, R2 }) + T ({ R1, R2 }) + T(R3)

OPT ({ R1, R3 }) + T ({ R1, R3 }) + T(R2)

Min

Selinger Algorithm:

Note: Valid only for the simple cost model

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

R2

R3

R4

R1

Selinger Algorithm:

Optimal plan:

Query: R1 R2 R3 R4

More Complex Cost Model

• DB System:

– Two join algorithms:

• Tuple-based nested loop join

• Sort-Merge join

– Two access methods

• Table Scan

• Index Scan (all indexes are in memory)

– Plans pipelined as much as possible

• Cost: Number of disk I/O s

Cost of Table Scan

Table Scan

R

Cost: B (R)

Cost of Clustered Index Scan

Index Scan

R

Cost: B (R)

Cost of Clustered Index Scan

Index Scan

R

Cost: B (X)
R.A > 50

X

Cost of Non-Clustered Index Scan

Index Scan

R

Cost: T (R)

Cost of Non-Clustered Index Scan

Index Scan

R

Cost: T (X)
R.A > 50

X

Cost of Tuple-Based NLJ

NLJ

Cost for entire plan:

Cost (Outer) + T(X) x Cost (Inner)

Inner

X

Outer

Cost of Sort-Merge Join

Right

X

Left

Y

Sort Sort

Merge Cost for entire plan:

Cost (Right) + Cost (Left) +

2 (B (X) + B (Y))
R1.A = R2.A

R1 R2

Cost of Sort-Merge Join

Right

X

Left

Y

Sort

Merge Cost for entire plan:

Cost (Right) + Cost (Left) +

2 B (Y)
R1.A = R2.A

R1 R2

Sorted on R1.A

Cost of Sort-Merge Join

Right

X

Left

Y

Merge Cost for entire plan:

Cost (Right) + Cost (Left)

R1.A = R2.A

R1 R2

Sorted on R1.A

Sorted on R2.A

Cost of Sort-Merge Join

Bottom Line: Cost depends on

sorted-ness of inputs

Principle of Optimality?

Query: R1 R2 R3 R4 R5

SMJ

R1

Is Plan X the optimal plan for joining R2,R3,R4,R5?

Optimal plan:
(R1.A = R2.A)

Plan X

Scan

Violation of Principle of Optimality

Plan Y Plan X

(sorted on R2.A) (unsorted on R2.A)

Optimal plan for joining

R2,R3,R4,R4

Suboptimal plan for joining

R2,R3,R4,R5

Principle of Optimality?

Query: R1 R2 R3 R4 R5

SMJ
Optimal plan:

(R1.A = R2.A)

Plan X

Can we assert anything about plan X?

R1

Scan

Weaker Principle of Optimality

If plan X produces output sorted on R2.A then

plan X is the optimal plan for joining R2,R3,R4,R5

that produces output sorted on R2.A

If plan X produces output unsorted on R2.A then

plan X is the optimal plan for joining R2, R3, R4, R5

Interesting Order

• An attribute is an interesting order if:

– participates in a join predicate

– Occurs in the Group By clause

– Occurs in the Order By clause

Interesting Order: Example

Select *

From R1(A,B), R2(A,B), R3(B,C)

Where R1.A = R2.A and R2.B = R3.B

Interesting Orders: R1.A, R2.A, R2.B, R3.B

Modified Selinger Algorithm

{R1} {R1}(A) {R3}(B) {R2} {R2}(A) {R2}(B) {R3}

{R1,R2} {R1,R2}(A) {R1,R2}(B) {R2,R3} {R2,R3}(A) {R2,R3}(B)

{R1,R2,R3}

Notation

{R1,R2} (C)

Optimal way of joining R1, R2 so that output is sorted

on attribute R2.C

Modified Selinger Algorithm

{R1} {R1}(A) {R3}(B) {R2} {R2}(A) {R2}(B) {R3}

{R1,R2} {R1,R2}(A) {R1,R2}(B) {R2,R3} {R2,R3}(A) {R2,R3}(B)

{R1,R2,R3}

