CPS216: Data-intensive Computing Systems Query Optimization (Costbased optimization)

Shivnath Babu

Query Optimization Problem

Pick the best plan from the space of physical plans

Cost-Based Optimization

- Prune the space of plans using heuristics
- Estimate cost for remaining plans
- Be smart about how you iterate through plans
- Pick the plan with least cost

Focus on queries with joins

Heuristics for pruning plan space

- Predicates as early as possible
- Avoid plans with cross products
- Only left-deep join trees

Physical Plan Selection

Pick minimum cost one

Review of Notation

- T (R) : Number of tuples in R
- B (R) : Number of blocks in R

Simple Cost Model

$\operatorname{Cost}(R \bowtie S)=T(R)+T(S)$
All other operators have 0 cost

Note: The simple cost model used for illustration only

Cost Model Example

Total Cost: $T(R)+T(S)+T(T)+T(X)$

Selinger Algorithm

- Dynamic Programming based
- Dynamic Programming:
- General algorithmic paradigm
- Exploits "principle of optimality"
- Useful reading:
- Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest

Principle of Optimality

Optimal for "whole" made up from optimal for "parts"

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Optimal Plan:

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Optimal plan for joining R3, R2, R4, R1

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Optimal plan for joining R3, R2, R4

Exploiting Principle of Optimality

Query: $R 1 \bowtie R 2 \bowtie \quad \ldots \quad \bowtie \quad$ Rn

Optimal for joining R1, R2, R3

Sub-Optimal for joining R1, R2, R3

Exploiting Principle of Optimality

A sub-optimal sub-plan cannot lead to an optimal plan

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Notation

OPT (\{ R1, R2, R3 \}):

Cost of optimal plan to join R1,R2,R3

T (\{ R1, R2, R3\}):
Number of tuples in $R 1 \bowtie R 2 \bowtie R 3$

Selinger Algorithm:

OPT (\{ R1, R2, R3 \}):
$\operatorname{Min}\left\{\begin{array}{l}\operatorname{OPT}(\{R 1, R 2\})+T(\{R 1, R 2\})+T(R 3) \\ \operatorname{OPT}(\{R 2, R 3\})+T(\{R 2, R 3\})+T(R 1) \\ \operatorname{OPT}(\{R 1, R 3\})+T(\{R 1, R 3\})+T(R 2)\end{array}\right.$

Note: Valid only for the simple cost model

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Selinger Algorithm:

Query: $R 1 \bowtie R 2 \bowtie R 3 \bowtie \Delta 4$

Optimal plan:

More Complex Cost Model

- DB System:
- Two join algorithms:
- Tuple-based nested loop join
- Sort-Merge join
- Two access methods
- Table Scan
- Index Scan (all indexes are in memory)
- Plans pipelined as much as possible
- Cost: Number of disk I/O s

Cost of Table Scan

Cost of Clustered Index Scan

Cost of Clustered Index Scan

Cost of Non-Clustered Index Scan

Cost: T (R)

Cost of Non-Clustered Index Scan

Cost of Tuple-Based NLJ

Cost of Sort-Merge Join

Cost for entire plan:

Cost (Right) + Cost (Left) + $2(B(X)+B(Y))$

Cost of Sort-Merge Join

Cost of Sort-Merge Join

Cost of Sort-Merge Join

Bottom Line: Cost depends on sorted-ness of inputs

Principle of Optimality?

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Optimal plan:

Is Plan X the optimal plan for joining R2,R3,R4,R5?

Violation of Principle of Optimality

(sorted on R2.A)

Suboptimal plan for joining R2,R3,R4,R5
(unsorted on R2.A)

Optimal plan for joining R2,R3,R4,R4

Principle of Optimality?

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Optimal plan:

Can we assert anything about plan X ?

Weaker Principle of Optimality

If plan X produces output sorted on R2.A then plan X is the optimal plan for joining R2,R3,R4,R5 that produces output sorted on R2.A

If plan X produces output unsorted on R2.A then plan X is the optimal plan for joining R2, R3, R4, R5

Interesting Order

- An attribute is an interesting order if:
- participates in a join predicate
- Occurs in the Group By clause
- Occurs in the Order By clause

Interesting Order: Example

Select *
From R1(A,B), R2(A,B), R3(B,C)
Where R1.A = R2.A and R2.B = R3. B

Interesting Orders: R1.A, R2.A, R2.B, R3.B

Modified Selinger Algorithm

$\{R 1, R 2\}$ \{R1,R2\}(A) \{R1,R2\}(B) \{R2,R3\} \{R2,R3\}(A) $\{R 2, R 3\}(B)$
$\{\mathrm{R} 1\} \quad\{\mathrm{R} 1\}(\mathrm{A}) \quad\{\mathrm{R} 2\} \quad\{\mathrm{R} 2\}(\mathrm{A}) \quad\{\mathrm{R} 2\}(\mathrm{B}) \quad\{\mathrm{R} 3\} \quad\{\mathrm{R} 3\}(\mathrm{B})$

Notation

\{R1,R2\} (C)
Optimal way of joining R1, R2 so that output is sorted on attribute R2.C

Modified Selinger Algorithm

