CPS216: Data-intensive Computing Systems Query Optimization (Costbased optimization)

Shivnath Babu

Query Optimization Problem

Pick the best plan from the space of physical plans

Cost-Based Optimization

- Prune the space of plans using heuristics
- Estimate cost for remaining plans

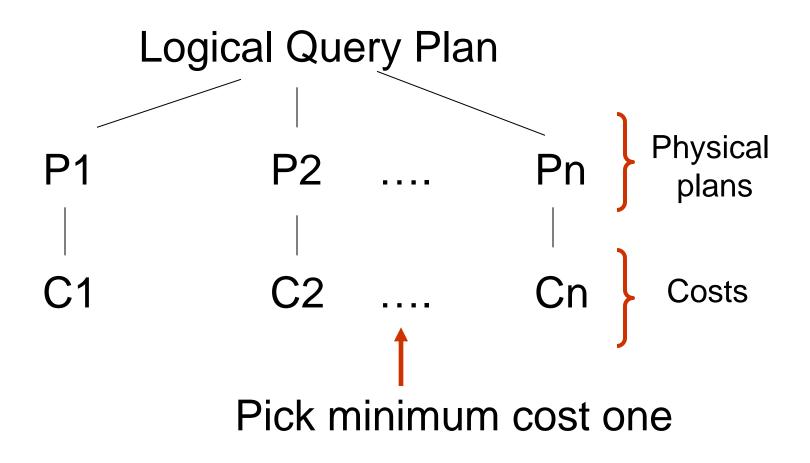
 Be smart about how you iterate through plans
- Pick the plan with least cost

Focus on queries with joins

Heuristics for pruning plan space

- Predicates as early as possible
- Avoid plans with cross products
- Only left-deep join trees

Physical Plan Selection



Review of Notation

- T (R) : Number of tuples in R
- B (R) : Number of blocks in R

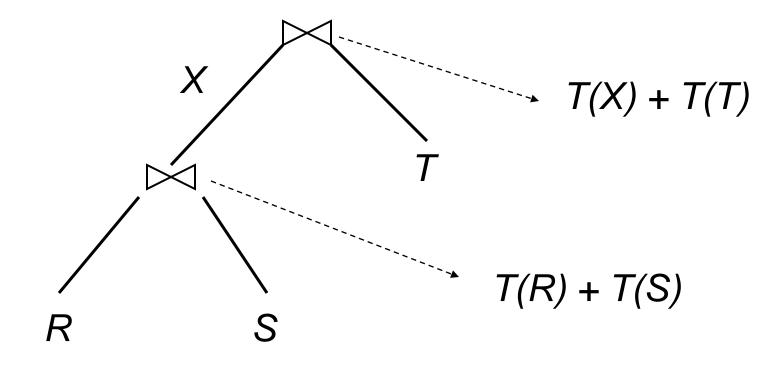
Simple Cost Model

Cost (R \bowtie S) = T(R) + T(S)

All other operators have 0 cost

Note: The simple cost model used for illustration only

Cost Model Example

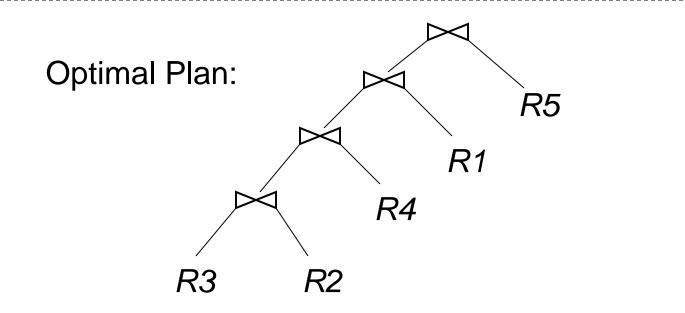


Total Cost: T(R) + T(S) + T(T) + T(X)

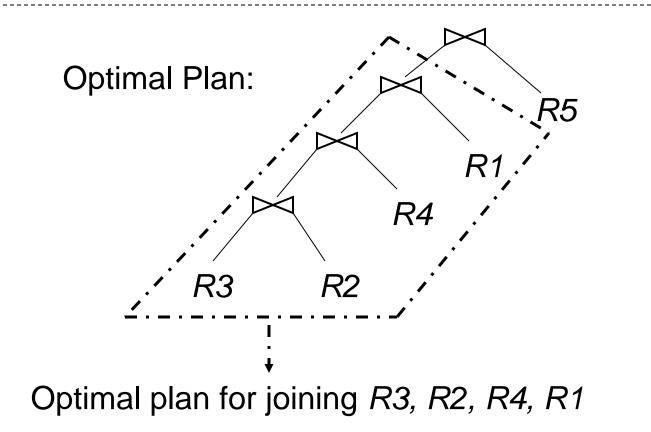
- Dynamic Programming based
- Dynamic Programming:
 - General algorithmic paradigm
 - Exploits "principle of optimality"
 - Useful reading:
 - Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest

Optimal for "whole" made up from optimal for "parts"

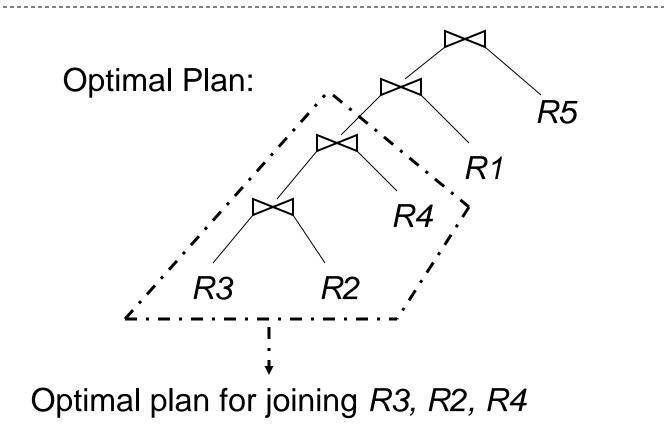
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$



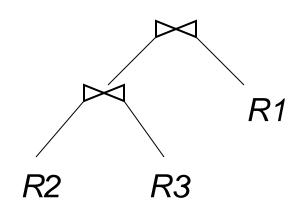
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$



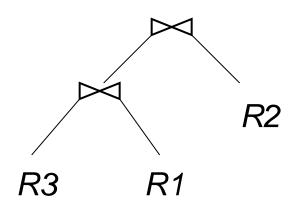
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$



Exploiting Principle of Optimality

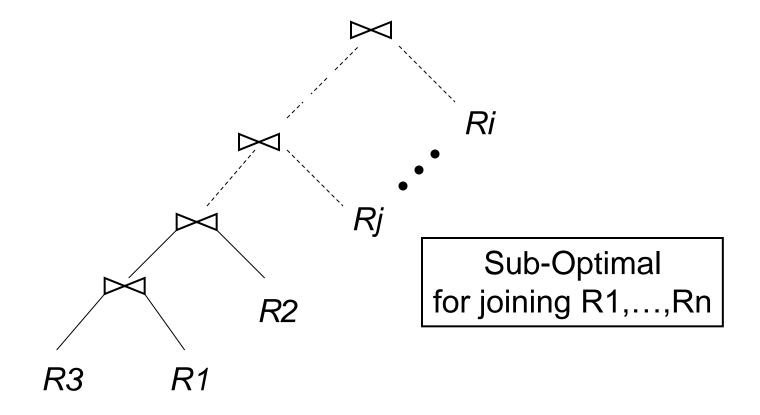


Optimal for joining *R1, R2, R3*

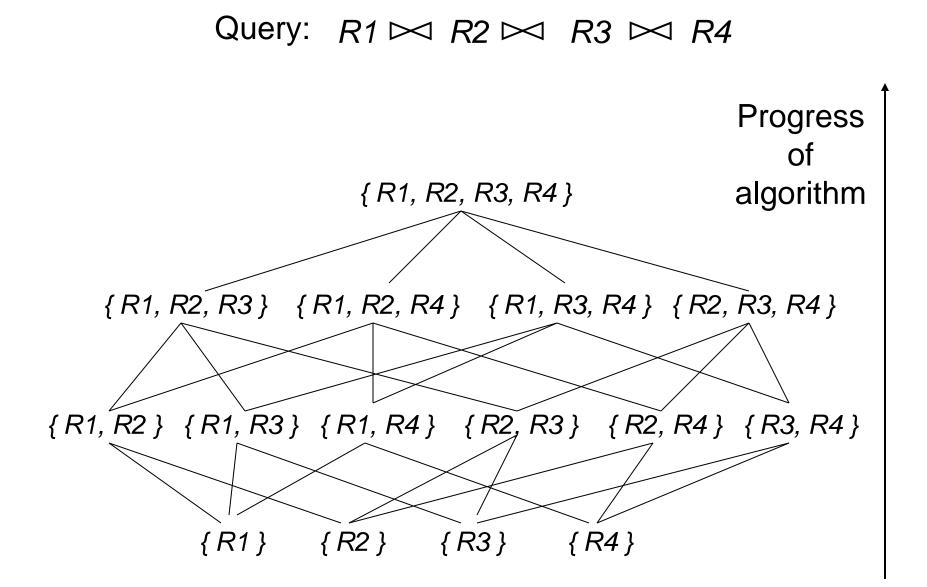


Sub-Optimal for joining *R1, R2, R3*

Exploiting Principle of Optimality



A sub-optimal sub-plan cannot lead to an optimal plan



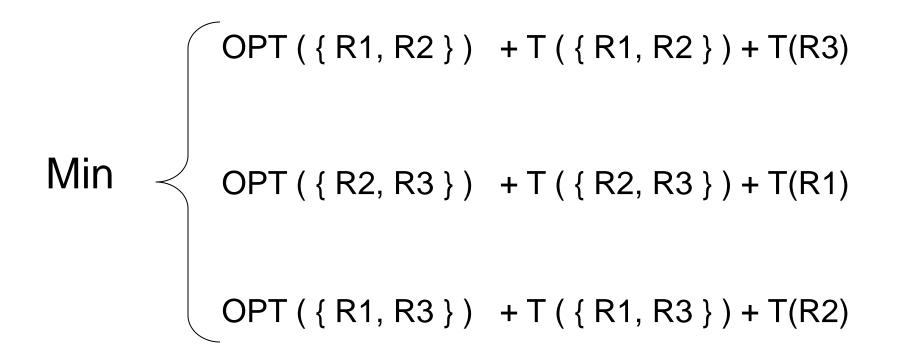
Notation

OPT ({ *R1, R2, R3*}): Cost of optimal plan to join *R1,R2,R3*

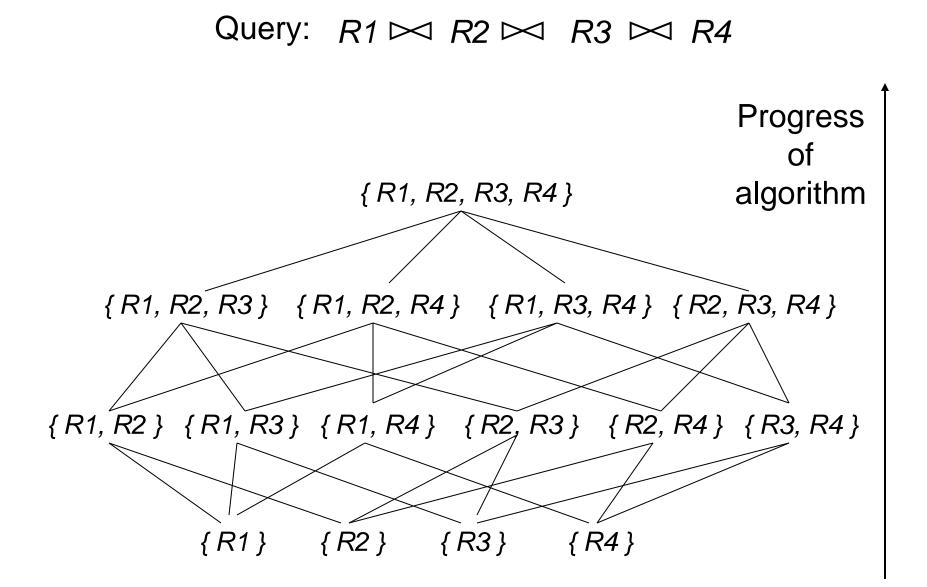
T ({ *R1, R2, R3* }):

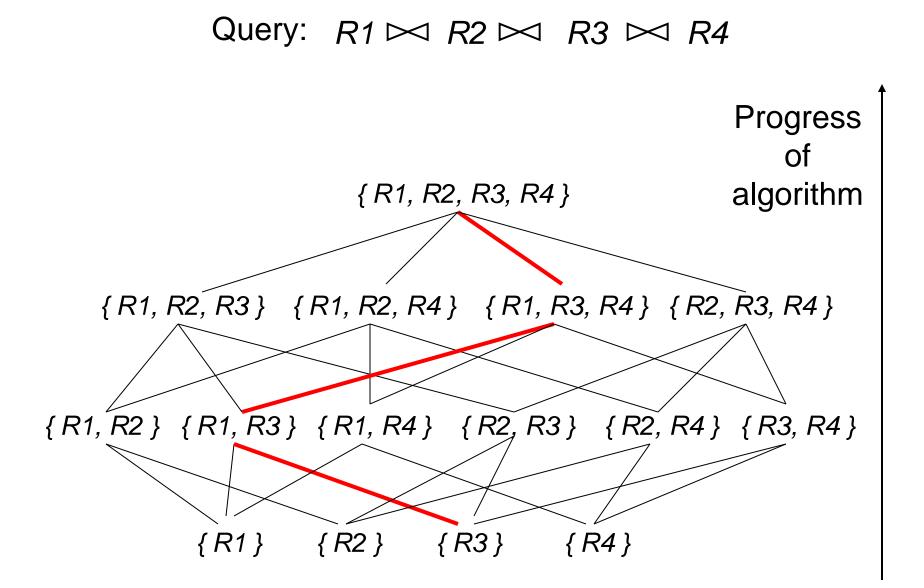
Number of tuples in $R1 \bowtie R2 \bowtie R3$

OPT ({ R1, R2, R3 }):

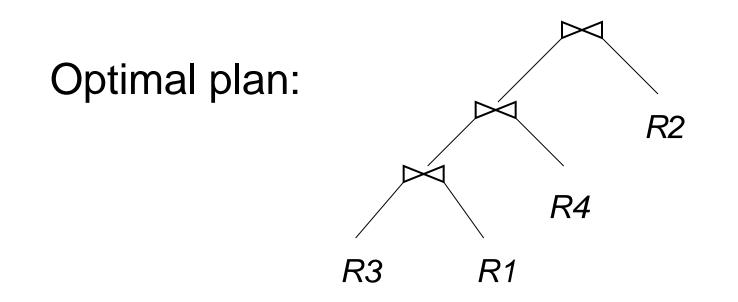


Note: Valid only for the simple cost model





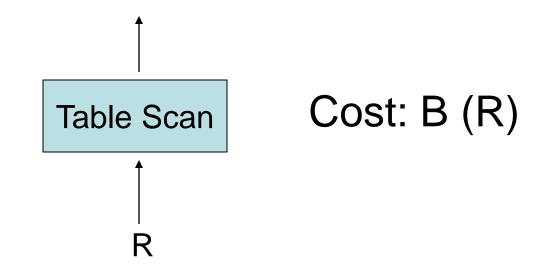
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$



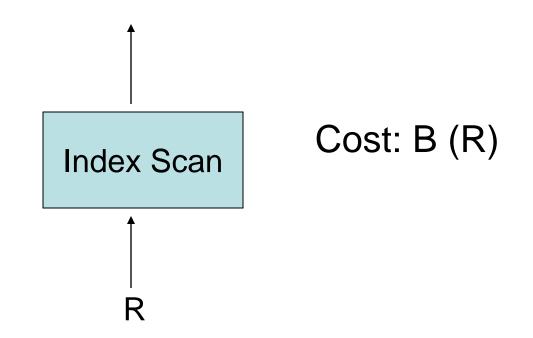
More Complex Cost Model

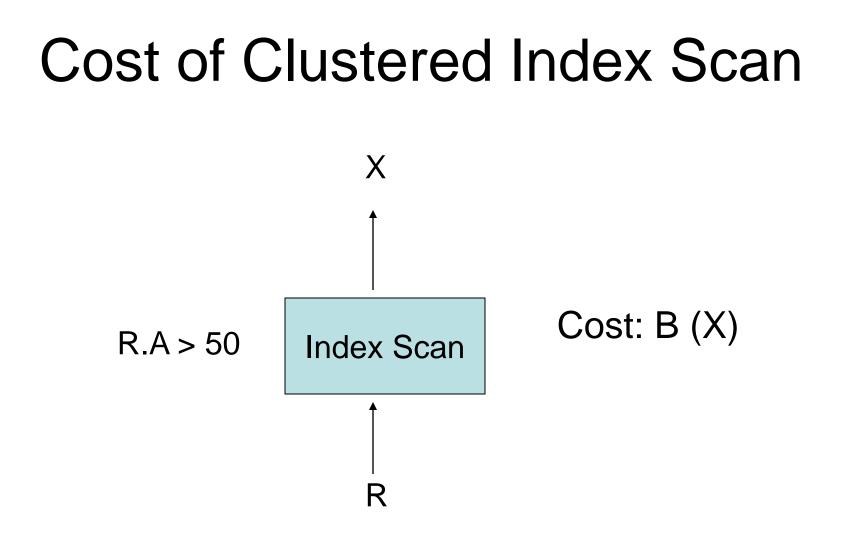
- DB System:
 - Two join algorithms:
 - Tuple-based nested loop join
 - Sort-Merge join
 - Two access methods
 - Table Scan
 - Index Scan (all indexes are in memory)
 - Plans pipelined as much as possible
- Cost: Number of disk I/O s

Cost of Table Scan

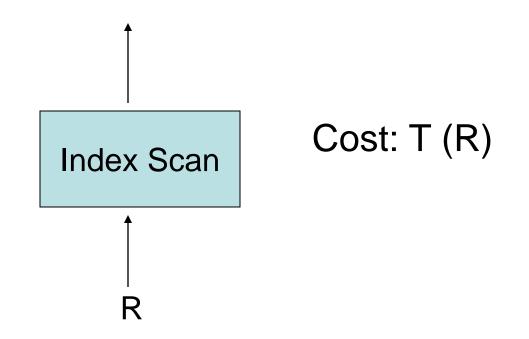


Cost of Clustered Index Scan

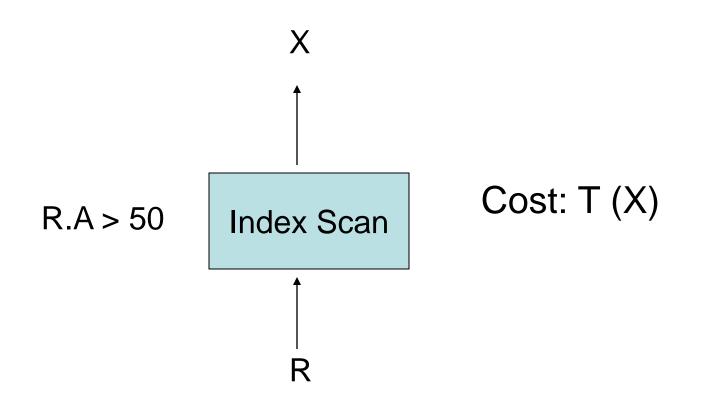




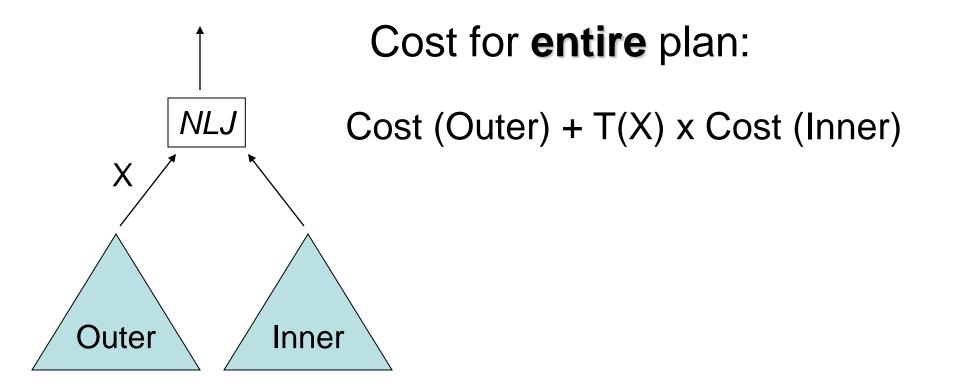
Cost of Non-Clustered Index Scan

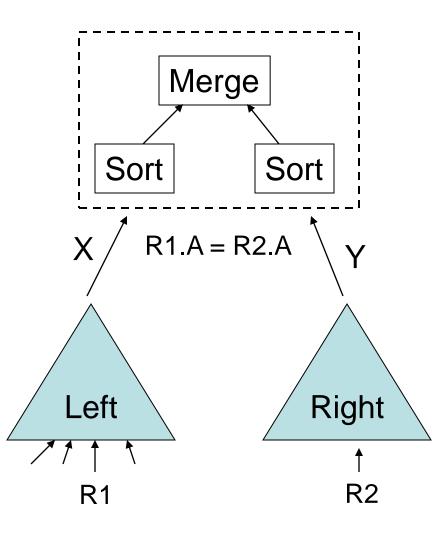


Cost of Non-Clustered Index Scan



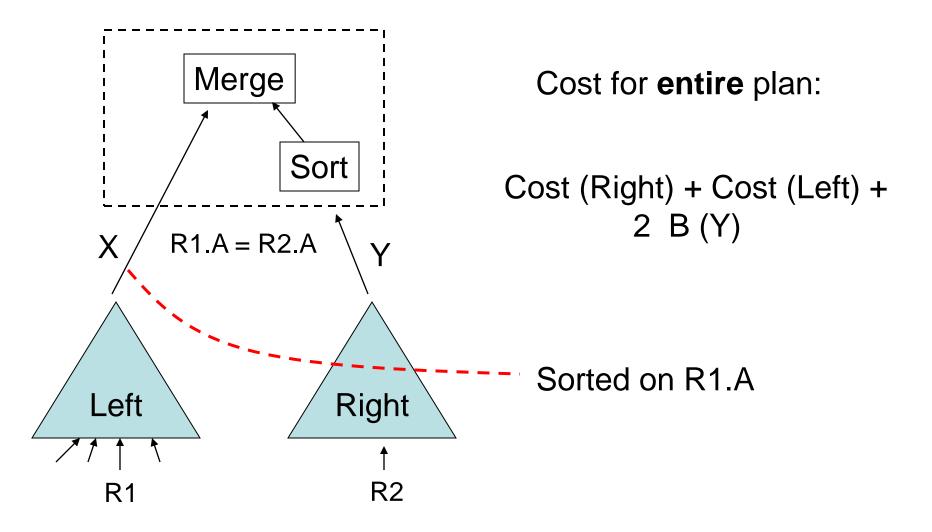
Cost of Tuple-Based NLJ

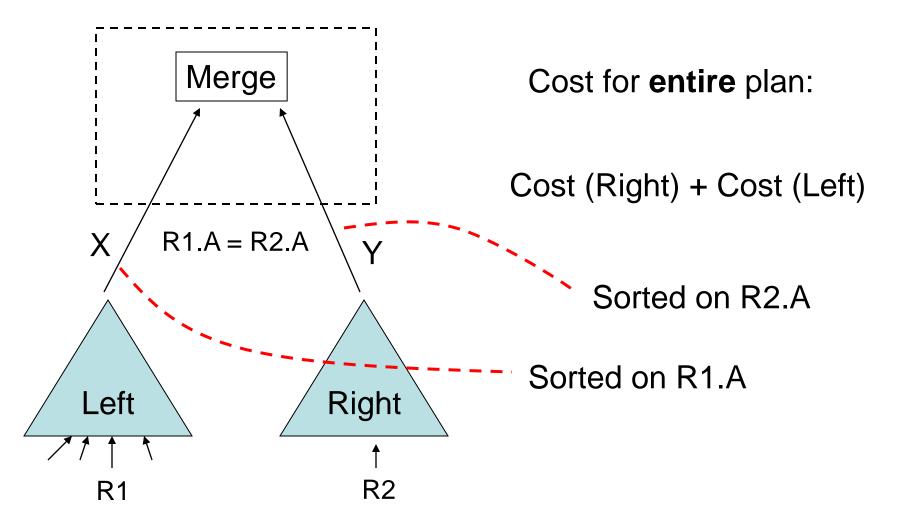




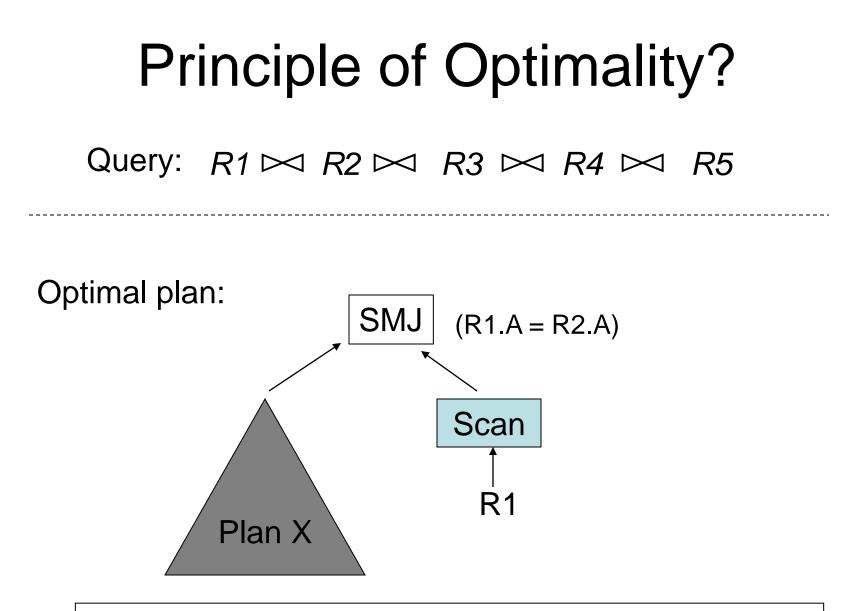
Cost for entire plan:

Cost (Right) + Cost (Left) + 2 (B (X) + B (Y))



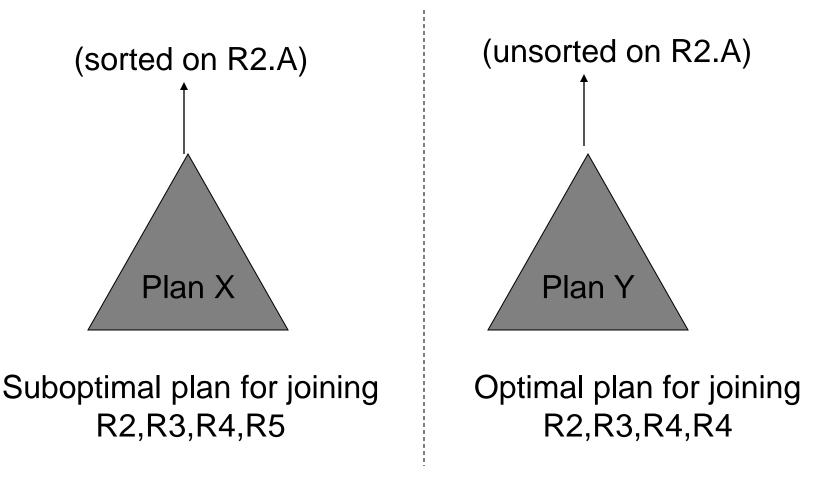


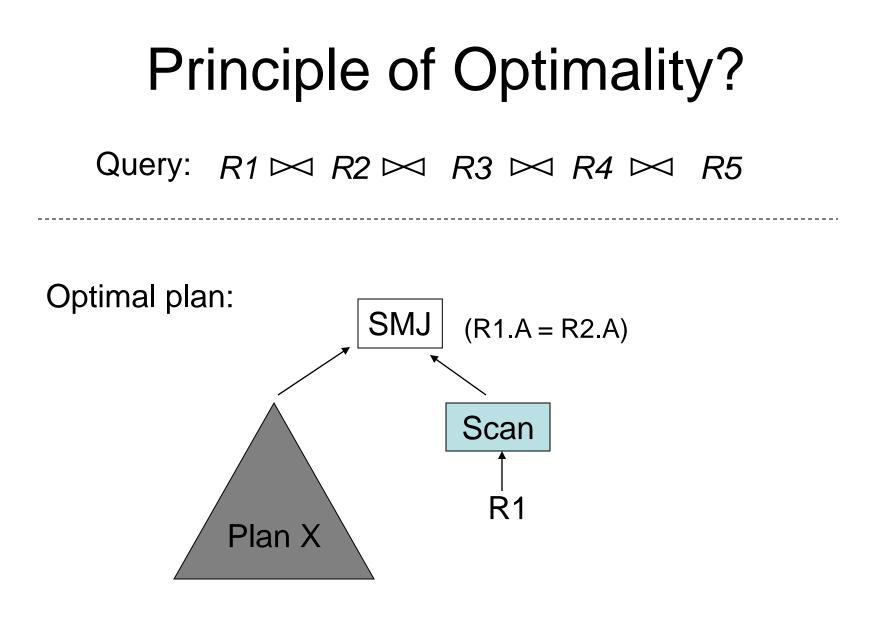
Bottom Line: Cost depends on sorted-ness of inputs



Is Plan X the optimal plan for joining R2,R3,R4,R5?

Violation of Principle of Optimality





Can we assert anything about plan X?

Weaker Principle of Optimality

If plan X produces output sorted on R2.A then plan X is the **optimal plan** for joining R2,R3,R4,R5 that produces output sorted on R2.A

If plan X produces output unsorted on R2.A then plan X is the **optimal plan** for joining R2, R3, R4, R5

Interesting Order

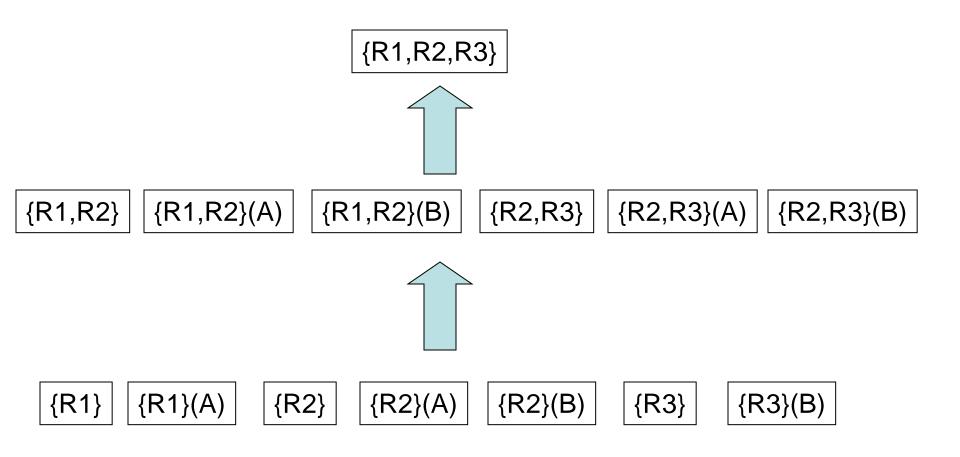
- An attribute is an **interesting order** if:
 - participates in a join predicate
 - Occurs in the Group By clause
 - Occurs in the Order By clause

Interesting Order: Example

Select * From R1(A,B), R2(A,B), R3(B,C) Where R1.A = R2.A and R2.B = R3.B

Interesting Orders: R1.A, R2.A, R2.B, R3.B

Modified Selinger Algorithm



Notation

Optimal way of joining R1, R2 so that output is sorted on attribute R2.C

Modified Selinger Algorithm $\{R1, R2, R3\}$ {R1, R2}(A) {R1,R2}(B) {R1,R2} {R2,R3} | {R2,R3}(A) | {R2, R3}(B) {R1}(A) {R2}(A) {R1} {R2} {R2}(B) {R3} {R3}(B)