
CPS216: Advanced Database Systems 

(Data-intensive Computing Systems) 

 

How MapReduce Works (in Hadoop) 

Shivnath Babu 



Lifecycle of a MapReduce Job 

Map function 

Reduce function 

Run this program as a 

MapReduce job 



Lifecycle of a MapReduce Job 

Map function 

Reduce function 

Run this program as a 

MapReduce job 



Map  
Wave 1 

Reduce 
Wave 1 

Map  
Wave 2 

Reduce 
Wave 2 

Input  
Splits 

Lifecycle of a MapReduce Job 

Time 



Components in a Hadoop MR Workflow 

Next few slides are from: http://www.slideshare.net/hadoop/practical-problem-solving-with-apache-hadoop-pig 



Job Submission 



Initialization 



Scheduling 



Execution 



Map Task 



Sort Buffer 



Reduce Tasks 



Quick Overview of Other Topics (Will 

Revisit Them Later in the Course) 

• Dealing with failures 

• Hadoop Distributed FileSystem (HDFS) 

• Optimizing a MapReduce job 



Dealing with Failures and Slow Tasks 

• What to do when a task fails? 

– Try again (retries possible because of idempotence) 

– Try again somewhere else 

– Report failure 

• What about slow tasks: stragglers 

– Run another version of the same task in parallel. Take 

results from the one that finishes first 

– What are the pros and cons of this approach? 

Fault tolerance is of 

high priority in the  

MapReduce framework 



HDFS Architecture 



Map  
Wave 1 

Reduce 
Wave 1 

Map  
Wave 2 

Reduce 
Wave 2 

Input  
Splits 

Lifecycle of a MapReduce Job 

Time 

How are the number of splits, number of map and reduce 

tasks, memory allocation to tasks, etc., determined?  



Job Configuration Parameters 

• 190+ parameters in 

Hadoop 

• Set manually or defaults 

are used 



Image source: http://www.jaso.co.kr/265 

Hadoop Job Configuration Parameters 



Tuning Hadoop Job Conf. Parameters 

• Do their settings impact performance? 

• What are ways to set these parameters? 

– Defaults -- are they good enough? 

– Best practices -- the best setting can depend on data, job, and 

cluster properties 

– Automatic setting 

 



Experimental Setting 

• Hadoop cluster on 1 master + 16 workers 

• Each node: 

– 2GHz AMD processor, 1.8GB RAM, 30GB local disk  

– Relatively ill-provisioned! 

– Xen VM running Debian Linux 

– Max 4 concurrent maps & 2 reduces  

• Maximum map wave size = 16x4 = 64 

• Maximum reduce wave size = 16x2 = 32 

• Not all users can run large Hadoop clusters: 

– Can Hadoop be made competitive in the 10-25 node, multi GB 

to TB data size range? 



Parameters Varied in Experiments 



• Varying number of reduce tasks, number of concurrent sorted 

streams for merging, and fraction of map-side sort buffer 

devoted to metadata storage 

Hadoop 50GB TeraSort 



Hadoop 50GB TeraSort 

• Varying number of reduce tasks for different values 
of the fraction of map-side sort buffer devoted to 
metadata storage (with io.sort.factor = 500) 



Hadoop 50GB TeraSort 

• Varying number of reduce tasks for different values of 
io.sort.factor (io.sort.record.percent = 0.05, default) 



• 1D projection for 

io.sort.factor=500 

Hadoop 75GB TeraSort 



Automatic Optimization? (Not yet in Hadoop)  

Map  
Wave 1 

Map  
Wave 3 

Map  
Wave 2 

Reduce 
Wave 1 

Reduce 
Wave 2 

Shuffle 

Map  
Wave 1 

Map  
Wave 3 

Map  
Wave 2 

Reduce 
Wave 1 

Reduce 
Wave 2 

Reduce 
Wave 3 

What if 
#reduces 
increased  

to 9? 


