CPS216: Data-intensive
Computing Systems

Failure Recovery

Shivnath Babu

Integrity or correctness of data

e \Would like data to be “accurate” or
“correct” at all times

EMP | Name |Age

White | 52
Green (3421
Blue 1

Integrity or consistency constraints

e Predicates data must satisfy

e Examples:
- X is key of relation R
- X — Yy holds in R (functional dependency)
- Domain(x) = {Red, Blue, Green}
— o is valid index for attribute x of R

- no employee should make more than
twice the average salary

Definition:

e Consistent state: satisfies all constraints
e Consistent DB: DB in consistent state

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
e When salary is updated,
new salary > old salary
e \When account record is deleted,
balance = 0

Note: could be “emulated” by simple

constraints, e.qg.,

account

Acct #

balance ‘deleted?‘

Constraints (as we use here) may
not capture “full correctness”

Example 2 Database should reflect
real world

<>
DB

="in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2 +.... an = TOT (constraint)
Deposit $100 in az:{ a2z <« a2+ 100
TOT « TOT + 100

Example: a1 + a2 +.... an = TOT (constraint)
Deposit $100 in @2: a2 <« a2 + 100
TOT « TOT + 100

3> | 50 150 150

TOT | 1000 1000 1100

Transaction: collection of actions
that preserve consistency

ConsistentDB)—— T Consistent DB’

10

Assumption:

If T starts with DB in consistent state +
T executes in isolation
= T leaves DB in consistent state

11

Correctness (informally)

o If we stop running transactions,
DB left consistent

e Each transaction sees a consistent DB

12

How can constraints be violated?

e Transaction bug
« DBMS bug
e Hardware failure
e.g., disk crash alters balance of account
e Data sharing

e.g.: T1: give 10% raise to programmers
T2: change programmers —> systems analysts

13

How can we prevent/fix violations?

e Due to failures only
e Due to data sharing only
e Due to failures and sharing

14

Will not consider:

e How to write correct transactions
e How to write correct DBMS
e Constraint checking & repair

That is, solutions studied here do not need
to know constraints

15

Recovery

e First order of business:

Failure Model

16

Events — Desired
™ Undesired — Expected
Unexpected

17

Our failure model

CPU

Processor

memory -

s

18

Desired events: see product manuals....

Undesired expected events:
System crash
- memory lost
- cpu halts, resets

that’s it!!

Undesired Unexpected: Everything else!

19

Undesired Unexpected: Everything else!

Examples:

e Software bugs

e Disk data is lost

e Memory lost without CPU halt

e CPU implodes wiping out universe....

20

Is this model reasonable?

Approach: Add low level checks +
redundancy to increase

the probability that model holds

E.g., Replicate disk storage (stable store)
Memory parity
CPU checks

A

21

Second order of business:

Storage hierarchy

Memory

=

Disk

22

Operations:

e Input (x): block containing X - memory
e Output (x): block containing x — disk

e Read (x,t): do input(x) if necessary
t « value of x in block

o Write (x,t): do input(x) if necessary
value of x in block « t

23

Key problem Unfinished transaction

Example Constraint: A=B
T1: A « Ax2
B « Bx?2

24

T1:

Read (At); t « tx2
Write (A,t);
Read (B,t); t <« tx2
Write (B,t);

Output (A); _

Output B); failurel!
T
w

A:.8 16 A:-816

B:.8 16 B: 8
w

memory disk

25

e Need atomicity: execute all actions of
a transaction or none
at all

26

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 782 AD

27

Undo Iogging (Immediate modification)

T1:

A=B

R
S

<T1, start>
<T1, A, 8>
<T1, B, 8>

Read (At); t <« tx2
Write (A,b);
Read (B,t); t <« tx2
Write (B,t);
Output (A);
Output (B);

=
A8 16 A8 16
B:8 16 B:8"16

~

disk

memory

<T1, commit>

~_
log

28

One “complication”

e LOg is first written in memory
e Not written to disk on every action

>
memory AS16
A8 16 B:8 | DB BAD STATE
B: & 16 # 1
Log: 3 Log
<Ti,start>
<Ti1, A, 8>
<Ti, B, 8>

29

One “complication”

e LOg is first written in memory
e Not written to disk on every action

A8 16 B:8 | DB BAD STATE
B: 216 # 2
: N
Log: 4 lLog
<T1,start> :
<Ti, A, 8> <T1, B, 8>
<Ti1, B, 8> <T1, commit>

<T1, commit> ~

30

Undo logging rules

(1) For every action generate undo log
record (containing old value)

(2) Before xis modified on disk, log
records pertaining to x must be

on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be

reflected on disk

31

Recovery rules for Undo logging

e For every Ti with <Ti, start> in log:
- Either: Ti completed =

<Ti,commit> or <Ti,abort> in log
- Or: Ti is incomplete

Undo incomplete transactions

32

Recovery rules for Undo Logging
(contd.)

(1) Let S = set of transactions with
<Ti, start> in log, but no

<Ti, commit> or <Ti, abort> record in log
(2) For each <Ti, X, v> in log,

in reverse order (latest — earliest) do:
- if Ti € Sthen | - write (X, v)
{ - output (X)
(3) Foreach Ti € Sdo
- write <Ti, abort> to log

33

What if failure during recovery?

No problem: Undo is idempotent

34

To discuss:

e Redo logging

e Undo/redo logging, why both?
e Real world actions

e Checkpoints

e Media failures

35

Redo logging (deferred modification)

T1: Read(At); t—tx2; write (At);
Read(B,t); t-tx2; write (B,t);

Output(A); Output(B)

output <

A:B816 ——_, |A: 816

R
S

<T1, start>
<T1, A, 16>
<T1, B, 16>

B: 816 B: 8
N

memory DB

<T1, commit>

~_
LOG

36

Redo logging rules

(1) For every action, generate redo log
record (containing new value)

(2) Before X is modified on disk (DB),
all log records for transaction that
modified X (including commit) must
be on disk

(3) Flush log at commit

37

Recovery rules: Redo logging

e For every Ti with <Ti, commit> in log:
— For all <Ti, X, v> in log:

| Write(X, v)

- Output(X)

s

XIS THIS CORRECT??

38

Recovery rules: Redo logging

(1) Let S = set of transactions with
<Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward
order (earliest — latest) do:
-if Ti e S then | Write(X, V)

i Output(X) - optional

39

Key drawbacks:

e Undo logging. cannot bring backup DB
copies up to date

e Redo logging: need to keep all modified
blocks in memory
until commit

40

Solution: undo/redo logging!

Update = <Ti, Xid, New X val, OIld X val>
page X

41

Rules

e Page X can be flushed before or
after Ti commit

e Log record flushed before
corresponding updated page (WAL)

42

Recovery Rules

e Identify transactions that committed
e Undo uncommitted transactions
e Redo committed transactions

43

Recovery is very, very SLOW I

Redo log:

First \ T1 wrote A,B Last Sash

Record Committed a year ago Record
(1 year ago) --> STILL, Need to redo after crash!!

44

Solution: CheCprint (simple version)

Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) o not discard butters)
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

45

Example: what to do at recovery?

Redo log (disk):

Crash

<T1,A,16>
<T1,commit>
Checkpoint
<T2,B,17>
<T2,commit>
<T3,C,21>

T

System stops accepting new transactions

46

Non-quiescent checkpoint for
Undo/Redo logging

L
Start-ckpt
O active TR: end

G ~ ~|TLT2.. | — [CKpt

N~

for
undo dirty buffer
pool pages

flushed

47

Example: Undo/Redo + Non Quiescent Chkpt.

<start T1>

<T1,A4,5>

<start T2>

<commit T1>

<T2,B,9,10>

<start chkpt(T2)> N 1. Flush log

:TtZ,Ct,_}_gr>15> 2. Flush all dirty buffers. May start
star ” new transactions

<T3,D,19,20> _
<end checkpt> . 3. Write <end checkpt>. Flush log

<commit T2>
<commit T3>

48

Examples what to do at recovery time?

L
O
G

no T1 commit

T1,- Ckpt Ckpt T1-
a_ T\1 end b
N

Undo T1 (undo a,b)

49

Example

OOor

T1 ckpt-s T1

ckpt-

“lend [

T1

T1

lemt]

Redo T1: (redo b,c)

50

Recovery process:

e Backwards PASS (end of log < latest checkpoint start)
— construct set S of committed transactions
— undo actions of transactions not in S

e Undo pending transactions

— follow undo chains for transactions in
(checkpoint active list) - S

e Forward PAsSS (latest checkpoint start © end of log)
— redo actions of S transactions

backward pass
start

|check- forward pass
pOInt —

51

Example: Redo + Non Quiescent Chkpt.

<start T1>

<T1,A,5>

<start T2>

<commit T1>

<T2,B,10>

<start chkpt(T2)> ~ 1 Flushlog _
<T2,C,15> 2. Flush data elements written
<start T3> . by transactions that committed
<T3,D,20> before <start chkpt>.

<end chkpt> y May start new transactions.
<commit T2> 3. Write <end chkpt>. Flush log

<commit T3>

52

Example: Undo + Non Quiescent Chkpt.

<start T1>
<T1,A5>

<start T2>
<T2,B,10>

<start chkpt(T1,T2)> Y

<T2,C,15>
<start T3>
<T1,D,20>
<commit T1>
<T3,E,25>
<commit T2>
<end checkpt>
<T3,F,30>

1. Flush log
2. Wait for active transactions
> to complete. New transactions
may start
3. Write <end checkpt>. Flush log

4

53

Real world actions

E.qg., dispense cash at ATM
Ti=aiaz...... Qj.uenn an

54

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

55

Media failure (loss of non-volatile

Solution:

storage)

T
—

A: 16

~

Make copies of data!

56

Example 1 Triple modular redundancy

o Keep 3 copies on separate disks
o Qutput(X) --> three outputs
o Input(X) --> three inputs + vote

< T < T <
X1 X2 X3
-~ -~ ~

57

Example #2 Redundant writes,
Single reads

e Keep N copies on separate disks
e Output(X) --> N outputs
o Input(X) --> Input one copy

{ - if ok, done
- else try another one

< Assumes bad data can be detected

58

Example #3: DB Dump + Log

> D
backup active
database database

log

e If active database is lost,
— restore active database from backup
— bring up-to-date using redo entries in log

59

Non-quiescent Archiving

e Log may look like:
<start dump>
<start checkpt(T1,T2)>
<T1,A1,3>
<T2,C,3,6>
<commit T2>
<end checkpt>
Dump completes
<end dump>

When can log be discarded?

T

db ast check-
log dump ”ﬁﬁﬂﬁd point

not needed for
media recovery

&
<«

not needed for undo
after system failure

A

not needed for
redo after system failure

time

61

Summary

e Consistency of data

e One source of problems: failures
- Logging
- Redundancy

e Another source of problems:
Data Sharing..... next

62

