
1

CS216: Data-Intensive

Computing Systems

Shivnath Babu

Concurrency Control

2

Transaction

• Programming abstraction

• Implement real-world transactions

– Banking transaction

– Airline reservation

3

Transaction: Programmer’s Role

Consistent State Consistent State

Transaction

4

Transaction: System’s Role

• Atomicity

– All changes of the transaction recorded or
none at all

• Durability

– All future transactions see the changes made
by this transaction if it completes

• Isolation

– Net effect as if the transaction executed in
isolation

5

Transaction: States

Begin Run

Abort

Commit

6

Transactions

• Historical note:

– Turing Award for Transaction concept

– Jim Gray (1998)

• Interesting reading:

Transaction Concept: Virtues and Limitations

by Jim Gray

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf

7

Transaction: Programmer’s View

See Section 8.6 of the textbook

8

Context

• We have seen:

– Ensure atomicity in presence of failures

• Next:

– Ensure Isolation during concurrency

9

Issues with Concurrency: Example

A = 500

B = 500

C = 500

Account

Balances

Bank database: 3 Accounts

Property: A + B + C = 1500

Money does not leave the system

10

Issues with Concurrency: Example

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Transaction T1: Transfer 100 from A to B

A = 400, B = 600, C = 500

A = 500, B = 500, C = 500

11

Issues with Concurrency: Example

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T2: Transfer 100 from A to C

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T1 Transaction T2 A B C

400 600 600

500 500 500

400 500 500

400 500 500

400 500 600

400 + 600 + 600 = 1600

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T1 Transaction T2 A B C

300 600 600

500 500 500

400 500 500

300 500 500

300 500 600

300 + 600 + 600 = 1500

14

Terminology

• Schedule:

– The exact sequence of (relevant) actions of

one or more transactions

15

Problems

• Which schedules are “correct”?

– Mathematical characterization

• How to build a system that allows only

“correct” schedules?

– Efficient procedure to enforce correctness

16

Correct Schedules: Serializability

• Initial database state is consistent

• Transaction:

– consistent state  consistent state

• Serial execution of transactions:

– Initial state  consistent state

• Serializable schedule:

– A schedule equivalent to a serial schedule

– Always “correct”

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

A B C

300 600 600

500 500 500

400 500 600

300 + 600 + 600 = 1500

Serial Schedule

T1

T2

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

A B C

300 600 600

500 500 500

400 600 500

300 + 600 + 600 = 1500

Serial Schedule

T2

T1

19

Serial Schedule

Sn S0 S1 S2

T1 T2 Tn

Consistent States

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T2 Transaction T1

Is this Serializable?

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Equivalent Serial Schedule

Transaction T2 Transaction T1

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

No. In fact, it leads

to inconsistent state

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

0

0

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 0

Write (A, s)

Read (C, s)

s = s + 0

Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

Yes, T2 is no-op

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 0

Write (A, s)

Read (C, s)

s = s + 0

Write (C, s)

Serializable Schedule

Transaction T2 Transaction T1

Serializability depends

on code details

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T2 Transaction T1

Serializable Schedule

Still Serializable!

27

Serializability

• General Serializability:

– Hard to determine

• Goal: weaker serializability

– Determined from database operations alone

• Database Operations:

– Reads, Writes, Inserts, …

28

Simpler Notation

r (X)
T

Transaction T reads X

w (X)
T

Transaction T writes X

29

What is X in r (X)?

• X could be any component of a database:

– Attribute of a tuple

– Tuple

– Block in which a tuple resides

– A relation

– …

30

New Notation: Example Schedule

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

time

31

Conflict Serializability

• Weaker notion of serializability

• Depends only on reads and writes

32

Conflict Serializability

Serializable Schedules

Conflict

Serializable

Schedules

33

Conflict Serializable Schedule

S S1 S2 Sn

Serial Schedule Conflict Serializable

Schedule

Transformations: swap non-conflicting actions

34

Transformation: Example

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)

35

Non-Conflicting Actions

Two actions are non-conflicting if whenever they

occur consecutively in a schedule, swapping them

does not affect the final state produced by the

schedule. Otherwise, they are conflicting.

36

Conflicting or Non-Conflicting?

(Work on paper: Example 1)

37

Conflicting Actions: General Rules

• Two actions of the same transaction

conflict:

– r1(A) w1(B)

– r1(A) r1(B)

• Two actions over the same database

element conflict, if one of them is a write

– r1(A) w2(A)

– w1(A) w2(A)

38

Conflict Serializability Examples

(Work on paper: Example 2 and 3)

39

Testing Conflict Serializability

• Construct precedence graph G for given

schedule S

• S is conflict-serializable iff G is acyclic

40

Graph Theory 101

Directed Graph:

Nodes

41

Graph Theory 101

Directed Graph: Edges

42

Graph Theory 101

Directed Graph:

Cycle

43

Graph Theory 101

Directed Graph: Not a cycle

44

Graph Theory 101

Acyclic Graph: A graph with no cycles

45

Graph Theory 101

Acyclic Graph:

46

Testing Conflict Serializability

• Construct precedence graph G for given

schedule S

• S is conflict-serializable iff G is acyclic

47

Precedence Graph

• Precedence graph for schedule S:

– Nodes: Transactions in S

– Edges: Ti → Tj whenever

• S: … ri (X) … wj (X) …

• S: … wi (X) … rj (X) …

• S: … wi(X) … wj (X) …

Note: not necessarily consecutive

48

Precedence Graph

• Ti → Tj whenever:

– There is an action of Ti that occurs before a

conflicting action of Tj.

49

Precedence Graph Example

(Work on paper: Example 4)

50

Testing Conflict Serializability

• Construct precedence graph G for given

schedule S

• S is conflict-serializable iff G is acyclic

51

Correctness of

precedence graph method

(Work on paper)

52

Serializability vs.

Conflict Serializability

(Work on paper: Example 5)

53

View Serializability

• A schedule S is view serializable if there

exists a serial schedule S’, such that the

source of all reads in S and S’ are the

same.

54

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

55

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

56

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

57

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

58

View Serializability

Serializable Schedules

Conflict

Serializable

Schedules

View Serializable

Schedules

59

Problems

• Which schedules are “correct”?

– Serializability theory

• How to build a system that allows only

“correct” schedules?

– Efficient procedure to enforce correctness

serializable schedules

60

Scheduler

DB

Enforcing Serializability

T1 T2 Tn

reads/writes
Strategy:

Prevent precedence

graph cycles?

61

Next

• Enforcing serializability

– Locking-based techniques

– Timestamp-based techniques

– Validation-based techniques

