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Transaction 

• Programming abstraction 

• Implement real-world transactions 

– Banking transaction 

– Airline reservation 
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Transaction: Programmer’s Role 

Consistent State Consistent State 

Transaction 
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Transaction: System’s Role 

• Atomicity  

– All changes of the transaction recorded or 
none at all 

• Durability 

– All future transactions see the changes made 
by this transaction if it completes 

• Isolation 

– Net effect as if the transaction executed in 
isolation 
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Transaction: States 

Begin Run 

Abort 

Commit 
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Transactions 

• Historical note:  

– Turing Award for Transaction concept 

– Jim Gray (1998) 

• Interesting reading: 

Transaction Concept: Virtues and Limitations 

by Jim Gray 

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf 
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Transaction: Programmer’s View 

See Section 8.6 of the textbook 
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Context 

• We have seen:  

– Ensure atomicity in presence of failures 

• Next: 

– Ensure Isolation during concurrency 
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Issues with Concurrency: Example 

A  = 500 

B  = 500 

C  = 500 

Account 

Balances 

Bank database: 3 Accounts 

Property:  A + B + C = 1500 

Money does not leave the system 
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Issues with Concurrency: Example 

Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Transaction T1: Transfer 100 from A to B 

A = 400, B = 600, C = 500 

A = 500, B = 500, C = 500 
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Issues with Concurrency: Example 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T2: Transfer 100 from A to C 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T1 Transaction T2 A B C 

400 600 600 

500 500 500 

400 500 500 

400 500 500 

400 500 600 

400 + 600 + 600 = 1600 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T1 Transaction T2 A B C 

300 600 600 

500 500 500 

400 500 500 

300 500 500 

300 500 600 

300 + 600 + 600 = 1500 
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Terminology 

• Schedule:  

– The exact sequence of (relevant) actions of 

one or more transactions  
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Problems 

• Which schedules are “correct”? 

– Mathematical characterization 

 

• How to build a system that allows only 

“correct” schedules? 

– Efficient procedure to enforce correctness 
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Correct Schedules: Serializability 

• Initial database state is consistent 

• Transaction:  

– consistent state  consistent state 

• Serial execution of transactions: 

– Initial state  consistent state 

• Serializable schedule: 

– A schedule equivalent to a serial schedule 

– Always “correct” 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

A B C 

300 600 600 

500 500 500 

400 500 600 

300 + 600 + 600 = 1500 

Serial Schedule 

T1 

T2 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

A B C 

300 600 600 

500 500 500 

400 600 500 

300 + 600 + 600 = 1500 

Serial Schedule 

T2 

T1 
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Serial Schedule 

Sn S0 S1 S2 

T1 T2 Tn 

Consistent States 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T2 Transaction T1 

Is this Serializable? 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Equivalent Serial Schedule 

Transaction T2 Transaction T1 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

No.  In fact, it leads 

to inconsistent state 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

0 

0 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 0 

Write (A, s)  

Read (C, s) 

s = s + 0 

Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

Yes, T2 is no-op 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 0 

Write (A, s)  

Read (C, s) 

s = s + 0 

Write (C, s) 

Serializable Schedule 

Transaction T2 Transaction T1 

Serializability depends  

on code details 



Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T2 Transaction T1 

Serializable Schedule 

Still Serializable! 
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Serializability 

• General Serializability: 

– Hard to determine 

• Goal: weaker serializability 

– Determined from database operations alone 

• Database Operations: 

– Reads, Writes, Inserts, … 
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Simpler Notation 

r  (X) 
T 

Transaction T reads X 

w  (X) 
T 

Transaction T writes X 
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What is X in r (X)? 

• X could be any component of a database: 

– Attribute of a tuple 

– Tuple 

– Block in which a tuple resides 

– A relation 

– … 
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New Notation: Example Schedule 

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

time 
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Conflict Serializability 

• Weaker notion of serializability 

• Depends only on reads and writes 
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Conflict Serializability 

Serializable Schedules 

Conflict 

Serializable 

Schedules 
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Conflict Serializable Schedule 

S S1 S2 Sn 

Serial Schedule Conflict Serializable 

Schedule 

Transformations: swap non-conflicting actions 
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Transformation: Example 

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B) 
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Non-Conflicting Actions 

Two actions are non-conflicting if whenever they 

occur consecutively in a schedule, swapping them 

does not affect the final state produced by the 

schedule.  Otherwise, they are conflicting. 
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Conflicting or Non-Conflicting? 

(Work on paper: Example 1) 
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Conflicting Actions: General Rules 

• Two actions of the same transaction 

conflict: 

– r1(A) w1(B) 

– r1(A) r1(B) 

• Two actions over the same database 

element conflict, if one of them is a write 

– r1(A) w2(A) 

– w1(A) w2(A)  
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Conflict Serializability Examples 

(Work on paper: Example 2 and 3) 
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Testing Conflict Serializability 

• Construct precedence graph G for given 

schedule S 

• S is conflict-serializable iff G is acyclic 
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Graph Theory 101 

Directed Graph: 

Nodes 
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Graph Theory 101 

Directed Graph: Edges 
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Graph Theory 101 

Directed Graph: 

Cycle 
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Graph Theory 101 

Directed Graph: Not a cycle 
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Graph Theory 101 

Acyclic Graph: A graph with no cycles 
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Graph Theory 101 

Acyclic Graph: 
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Testing Conflict Serializability 

• Construct precedence graph G for given 

schedule S 

• S is conflict-serializable iff G is acyclic 
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Precedence Graph 

• Precedence graph for schedule S: 

– Nodes: Transactions in S 

– Edges:  Ti → Tj whenever 

• S: … ri (X) … wj (X) … 

• S: … wi (X) … rj (X) … 

• S: … wi(X) … wj (X) … 

 

Note: not necessarily consecutive 
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Precedence Graph 

• Ti → Tj whenever: 

– There is an action of Ti that occurs before a 

conflicting action of Tj. 
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Precedence Graph Example 

(Work on paper: Example 4) 
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Testing Conflict Serializability 

• Construct precedence graph G for given 

schedule S 

• S is conflict-serializable iff G is acyclic 
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Correctness of  

precedence graph method 

(Work on paper) 
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Serializability vs.  

Conflict Serializability 

(Work on paper: Example 5) 
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View Serializability 

• A schedule S is view serializable if there 

exists a serial schedule S’, such that the 

source of all reads in S and S’ are the 

same. 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability 

Serializable Schedules 

Conflict 

Serializable 

Schedules 

View Serializable 

Schedules 
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Problems 

• Which schedules are “correct”? 

– Serializability theory 

 

• How to build a system that allows only 

“correct” schedules? 

– Efficient procedure to enforce correctness 

serializable schedules 
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Scheduler 

DB 

Enforcing Serializability 

T1 T2 Tn 

reads/writes 
Strategy: 

Prevent precedence 

graph cycles? 
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Next 

• Enforcing serializability 

– Locking-based techniques 

– Timestamp-based techniques 

– Validation-based techniques 


