
What is Quantum Computing?What is Quantum Computing?
• Particles on a very small scale (e.g. electrons), do y ( g )

not follow classical mechanics. Instead, they show 
a different set of laws, which we call quantum 
mechanics.

• Quantum compuing tries to represent data using 
quantum properties and those laws and performquantum properties, and those laws, and perform 
(quantum) operations on this data. 

• For e.g., superposition and entanglement are two 
quantum properties exhibited at the small scale 
only.y



Basic TermsBasic Terms

Classical Bit.
• Take a regular bit b.
• b can only have a value of 0 or 1. i.e., it is present in exactly 1 of 2 

states.
H b 0 OR b 1• Hence b = 0 OR b = 1.

Qubit
• However a qubit q is like a vector on the unit circle• However, a qubit q is like a vector on the unit circle.

q = αi + βj 
• It is present in both states 0 and 1.
• Probability of being present in state 0 = α2• Probability of being present in state 0 = α2.
• Probability of being present in state 1 = β2.

• In other words a qubit is a combination of the states 0 and 1 It can• In other words, a qubit is a combination of the states 0 and 1. It can 
have any values for α and β such that α2 + β2 = 1.



Basic Terms

Classical 2-bit system.
• Take a variable X, which can be formed from 2-bits.
• Hence, X = a1 a2.
• At any point of time, X only has 1 of 22 possible values.
• e.g. X = 01. (it could also be 00, 10 or 11).

2-Qubit System2-Qubit System.
• In a 2-qubit system, the value of the qubit, is a combination of ALL 4 states.
• X =  a |00> + b |01 + c |10> + d |11>.
• Hence, think of it like, some part of X is present in 00, some part in 01 and so 

on.
• Here, the probability of X being in state 00 is a2, of being in state 01 is b2 and so 

on.
• a2 + b2 + c2 + d2 = 1.a  b  c  d  1.
• This is similar to X being a 4D unit vector.

Superposition
• This concept of a qubit being present in all 4 states, with a certain probability of 

being in each state, is called superposition.



Representation of a QubitRepresentation of a Qubit

• Since a qubit exists in multiple states, it is represented as follows. 

• Here,           and            are the orthonormal basis. They are defined 
in matrix form as:

• Similarly, for a n-qubit system, there are 2n orthonormal basis. For 
e.g., for a  2-qubit system, these are 



Quantum Gates vs Classical GatesQuantum Gates vs Classical Gates

• Classical Not gate

• Quantum Gates
• One gate is called the Pauli-X gate. It is the equivalent of a NOT g g q

gate.

P = 

• For e.g., say a qubit

• Then,   P *         =                          = 



More Quantum Gates (universal)More Quantum Gates (universal)

• The three basic classical gates, AND, OR and NOT can be used to 
l l i l f i f h fsolve any classical function of the form 

• Hence, together they can be combined to do universal classical 
computation.
A NAND t b d t i l t ll th th t d h• A NAND gate can be used to simulate all the three gates, and hence 
it can also be used to do universal computation.

Si il t thi th i t ll d th T ff li t hi h i• Similar to this, there is a gate, called the Toffoli gate, which is 
reversible. Quantum computers can only simulate reversible gates. 
Since a quantum computer can execute the toffoli gate, it can also 
be used to do universal classical computation.p



How to evaluate a function fHow to evaluate a function f
Classical Computation

• A classical gate takes input as 0101 and gives output as 10• A classical gate takes input as 0101, and gives output as 10.

Quantum Computation

• When a quantum gate takes input (say 010) it gives the output as a• When a quantum gate takes input (say 010), it gives the output as a 
superposition of multiple states, and not a single state.



Why is this helpful?Why is this helpful?

• Since there is a gate, (Toffoli Gate) which is universal, a quantum 
computer can do every computation that a classical computer can 
do.

• However, when using a quantum gate, we get the output as a 
superposition of multiple states, and not a single state. This is 
exploited to achieve faster results, than what we can achieve by 
using a classical gate.



Quantum OracleQuantum Oracle

• In our program, we will also use what isIn our program, we will also use what is 
called the quantum oracle.

• An oracle is the portion of an algorithm which can be 
regarded as a “black box” whose behavior can be 
relied upon

– Theoretically, its implementation does not need to be 
specified

– However, in practice, the implementation must beHowever, in practice, the implementation must be 
considered



Quantum Oracle…Quantum Oracle…

• Why do we use oracles?
– Conceptually simplifies algorithms
– An oracle hides the details of the implementation, and allows us 

to focus on the algorithm.g

• An oracle can be made up of quantum gates, or it can be made up 
of classical gates An oracle given any input X gives us the outputof classical gates. An oracle, given any input X, gives us the output 
f(X).



Measuring a quantum state.Measuring a quantum state.

• When we try to measure the value of a quantum state, it collapses to 
a single basis, just like a regular classical bit.

• A quantum algorithm with classical inputs has to find a way to evolve q g p y
them into near-classical outputs again for efficient read-out, even 
though the intermediate state of the system will be decidedly 
unclassical.



DEALING INTEGER DEALING INTEGER 
PROGRAMS WITH 

ADIABATIC QUANTUM 
COMPUTING COMPUTING 



Outcome of this Research 
P jProject

• We develop model of adiabatic quantum computing. We can p p
simulate small adiabatic quantum computer on MATLAB.

• Our model of adiabatic quantum computing produces results that m f q m mp g p
are in accordance with research papers describing state of the 
art research in Adiabatic quantum computing.

• We are able to describe general mechanism of solving integer 
programs using adiabatic quantum computer.

• We are able to show that adiabatic quantum computer can solve 
optimization problem in constant time adiabatic evolution.



Schrödinger's EquationSchrödinger s Equation

( ) ( ) ( )d
d tih t H tψ ψ=

•h stands for Plank’s constant

•Operator H stands for Hamiltonian  Operator H stands for Hamiltonian. 

•What does Hamiltonian do?

•Hamiltonian describes energy contents of the  
system. How?



Schrödinger's EquationSchrödinger s Equation

• How to solve Schrödinger's equation?How to solve Schrödinger s equation?
• The solution of Schrödinger's equation is 

( ) exp (0)iHtt
h

ψ ψ⎛ ⎞= −⎜ ⎟
⎝ ⎠h⎝ ⎠

• Evolution of one quantum state to another is 
UnitarUnitary.

• Possible when Hamiltonian is a Hermitian 
MatrixMatrix.



HamiltonianHamiltonian
• Hamiltonian is an operator which we represent by a Hermitian p p y

matrix.

• Eigen values of Hamiltonian represent spectrum of possible g f m p p m f p
energy levels (states) of a quantum system.

• The eigenvector (eigenstate) associated with is the lowest eigen-The eigenvector (eigenstate) associated with is the lowest eigen
value energy is the ground state of the Hamiltonian.

• What is the lowest eigenstate 
5 0 0−⎡ ⎤

⎢ ⎥• What is the lowest eigenstate 
(ground state) of this Hamiltonian? 0 1 0

0 0 3
H ⎢ ⎥= −⎢ ⎥

⎢ − ⎥⎣ ⎦

[1   0   0]'X =



Cl i l O ti i ti  i  t  f Cl i l O ti i ti  i  t  f Classical Optimization in terms of Classical Optimization in terms of 
Quantum statesQuantum states

  Given: f: {Given: f: {00,,11}}n n N,  f(x) for =xN,  f(x) for =x11,…..,…..xxnn, , 
Objective: find Objective: find xxminmin which minimizes fwhich minimizes f

000( )
.

f x⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

111

.
.

( )

H

f x

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

|x>      are the eigenvectors|x>      are the eigenvectors
f(x)    are the eigenvaluesf(x)    are the eigenvalues
Th     i h i i l i l  Th     i h i i l i l  

111( )f⎣ ⎦

The answer = state with minimal eigenvalue The answer = state with minimal eigenvalue 



Ground state solutionGround state solution
• Which ↑↓ spin distribution p

maximizes the number of red 
edges?

• Analogous to a combinatorial 
optimization problem.

• Lowest energy question for 
magnetic materials.

Courtesy Dorit Aharonov
UC Berkeley

The ground state of the magnet is solution to our 
optimization problem!

UC Berkeley

optimization problem!



Adiabatic EvolutionAdiabatic EvolutionAdiabatic EvolutionAdiabatic Evolution
| ( ) ( ) | ( )d t
dti H t tψ ψ=

Adiabatic theorem: [[BornFockBornFock ’28, Kato ’51]’28, Kato ’51]

H(0) H(T)

Ground state of H(0) Ground state of H(T)| ( )Tψ| (0)ψ

2
1

min { ( )}s tT γ>> 1 0( ) ( ) ( )t E t E tγ = −



Let us start our projectLet us start our project

• Imagine there are m bidders:g

1 2 3, , ,...., mB B B B
• Suppose there are n items 

1 2 3, , ,...., nI I I I

• The auctioneer will accept bids that maximizes his 
payoff.



Quantum AuctionsQuantum Auctions
• An auctioneer gives p qubits to each bidder.An auctioneer gives p qubits to each bidder.

• The initial state of all qubits is  |000 0>The initial state of all qubits is  |000..0>

• We can parse our quantum register |x> as • We can parse our quantum register |x> as 
follows

1 2 mx = Item#,bidder _bid ; Item#,bidder _bid;....;Item#,bidder _bid



Quantum AuctionsQuantum Auctions

• Let us mention some rules Let us mention some rules 
– Bidders will prepare their respective qubits 

and hand them over to the auctioneerand hand them over to the auctioneer.
– Auctioneer cannot assign same item to 

multiple bidders.multiple bidders.
– Such an assignment sill be infeasible.
– Auctioneer will select payoffs from Auctioneer will select payoffs from 

available feasible quantum states that we 
describe next.



Example of Superposition of BidsExample of Superposition of Bids

• Suppose we have two bidder B1 and B2 and 1 itempp

• Bidder1 puts $2 on the item while Bidder2 puts $3 on 
the item

• The resulting state of |x> will be• The resulting state of |x> will be

00 10
00U

+  f  Bidd 11 00
2

00 11
00

U

U

→

+

 for Bidder1

 f  Bidd 22 00
2

U →  for Bidder2



SuperpositionSuperposition
• The resulting state of |x> will be the superposition of g p p

qubits prepared by Bidder1 and that by Bidder2. That 
is,

0000 0011 1000 1011
x

+ + +
=

Infeasible

2
x =

• In vector formIn vector form

1[1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0]Tx = [1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0]
2

x



Preparing HamiltoniansPreparing Hamiltonians
• Initial Hamiltonian W will contain entries Initial Hamiltonian W will contain entries 

corresponding to the number of ones in each 
quantum state.

{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}W diag=

• Final Hamiltonian Hf will contain diagonal 
entries corresponding to –ve of payoffs for 
each quantum bid state.

{0,1,2,3,1,0,0,0,2,0,0,0,3,0,0,0}fH diag= − { , , , , , , , , , , , , , , , }f g



Preparing HamiltonianPreparing Hamiltonian
• We want |x> to be the ground state of W.We want |x  to be the ground state of W.
• Is this really the case?
• No!No!
• So we modify our initial Hamiltonian as 

††

1 2

iH UWU
U U U

=

= ⊗1 2U U U= ⊗

• So that now |x> is the lowest eigenstate of Hi



Quantum Auction ProtocolQuantum Auction Protocol
• Start with |x> the ground state of Hi.| g f

• Change Hi slowly so that it becomes Hf

• When Hamiltonian is changing |x> is also changing.

• The final state |x> will be the ground state of Hf 
which encodes our solutionwhich encodes our solution.

• Auctioneer will measure the final state and announce 
the winner.



QUANTUM AUCTIONS QUANTUM AUCTIONS QQ
PROTOCOLPROTOCOL

( ) (1 ) i fH s s H sH= − +

iH H= fH H=

Ground state of H(0) Ground state of H(f)| x| x

Solution

2
1

min { ( )}s tT γ>> 1 0( ) ( ) ( )t E t E tγ = −

Solution

s
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DEMODEMO

LET US SEE MATLAB 
DEMONSTRATION OF QUANTUM DEMONSTRATION OF QUANTUM 

AUCTION PROTOCOL



Quantum Computer and Integer 
P iProgramming

• Previous example gives insight into 
quantum computer solving small integer quantum computer solving small integer 
program namely: Auction winner 
determination problemdetermination problem.

• Can we extend this approach to solve 
integer programs in general???



Quantum Computer and Integer 
P iProgramming

• Good News
– It turns out that we can use quantum computer 

l  i   i  Adi b i   solve integer programs using Adiabatic quantum 
computing. How?

– Can we generalize the procedure we followed in the 
last example.



Quantum Computer and Integer 
P iProgramming

• Prepare Hf the final Hamiltonian which encodes our 
solution. Can we do this efficiently?

– For 2^d possible values of input variables, we can 
calculate corresponding objective values using 
single black box query!g q y

– If this is done using NMR Quanutum information 
processor, the corresponding 2^d objective values p , p g j
appear as frequency peaks on NMR spectrometer.

– These frequencies correspond to eigen values since These frequencies correspond to eigen values since 
Energy ~ frequency



Quantum Computer and Integer 
P iProgramming

• Prepare Hc the constraint Hamiltonian containing 1, -1 
t i  Th  ith t  f thi  H ilt i  i  1 if entries. The ith entry of this Hamiltonian is 1 if 

corresponding combination of variable values which is 
infeasible. How to do this

– Out of 2^d possible values of input variables, we 
can determine what combinations of variable values 
are infeasible using single query to quantum black are infeasible using single query to quantum black 
box!

If thi  i  d  i  NMR Q t  i f ti  – If this is done using NMR Quantum information 
processor, the mixture of feasible and infeasible 
states appear as frequency peaks with 
corresponding phase shifted (0 or 180) on NMR corresponding phase shifted (0 or 180) on NMR 
spectrometer.



Quantum Computer and Integer 
P iProgramming

• Prepare |x> using superposition of all input p | g p p p
variable values. |x> is the initial state of our 
system.

• Evolve Hc to Hm. This evolution is simple. The 
intermediate Hamiltonian Hm has eigen valuesintermediate Hamiltonian Hm has eigen values 
same as those of Hc but only incremented by 1.

• Evolve Hm to Hf and measure the final state 
which encodes our solution. 



Quantum Computer and Integer 
P iProgramming

Adiabatic Quantum Computer solving Integer • Adiabatic Quantum Computer solving Integer 
Program

c n nH H sI ×= − (1 ) m fH s H H= − +

cH H= mH H= fH H=
Phase 1: Removal of Infeasible  Phase 2: Selecting Best feasible 

States from superposition state from filtered superposition

INITIALx
OPTIMALx

FEASIBLEx



Let us Solve Maximum Weight 
I d d t S t P bl  i  QCIndependent Set Problem using QC

W=1

1

W=9

2 5

W=11

3 4

W=4 W=3

Maximum Weight of Independent vertices is : 15



DEMODEMO

• Let us see MATLAB demonstration of 
Adiabatic quantum computer solving 
Maximum weight independent set of the 
graph.



DEMO OUTPUTDEMO OUTPUT
2

1 4

1.6

1.8

ig
ht

1

1.2

1.4

et
tin

g 
th

is
 w

ei

0.6

0.8

1

ba
bi

lit
y 

of
 g

e

0.2

0.4

pr
ob

-20 -15 -10 -5 0 5 10 15 20 25 30
0

Maximum weight



How efficient is Adiabatic 
Q  C iQuantum Computation

• The good news is that time spent in the The good news is that time spent in the 
evolution of Hamiltonian doesn’t depend upon 
the size of Hamiltonian!!!

• Time depends on the difference between two p
lowest eigenvalues also known as spectral gap.

2
1

min { ( )}s tT γ>> 1 0( ) ( ) ( )t E t E tγ = −



How efficient is Adiabatic 
Q  C iQuantum Computation

• Time spent in evolution depends ONLY on 
difference between two smallest normalized ff m m
Eigenvalues of evolving Hamiltonian.

• Time spent in evolution DOESNOT depend on 
the number of qubits i.e. size of the problem q p
as such.

• Can we show this?



How efficient is Adiabatic 
Q  C iQuantum Computation
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Efficiency of HamiltonianEfficiency of Hamiltonian
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Time Complexity of our Adiabatic 
Q  C i  Al i hQuantum Computing Algorithm

• Bad News:
– As we increase size of the problem the normalized 

spectral gap can decrease exponentially in terms 
of number of qubits!

• Good News:
– We can nullify the exponential decrease in the y p

spectral gap by exponentially increasing the 
eigenvalues!



Time Complexity of our Adiabatic 
Quantum Computing Algorithm

• In our Maximum weight problem, the eigenvalues of 
final Hamiltonian may not be simply the sum of 
feasible combinations of the weights of vertices  feasible combinations of the weights of vertices. 

• We can set eigenvalues to be the exponent of sum of We can set eigenvalues to be the exponent of sum of 
feasible weights.  

• The resulting quantum algorithm is implemented in 
LIP_Final2_mod.m



Variation in spectral GapVariation in spectral Gap
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How to test our simulationHow to test our simulation
• Please  remember you will be simulating a quantum computer on y p

classical computer.

• How to measure time spent in evolution?m m p

• So we have fixed time step of 1/50. (You can decrease that if 
you want to)you want to)
– Add more vertices by adding more weights to the weight 

vector.
The output should contain only 1 long stem regardless of how – The output should contain only 1 long stem regardless of how 
many vertices you add. 

– If this is not the case then adiabatic evolution wasn’t 
completed in constant time  In such a situation please drop completed in constant time. In such a situation please drop 
me an e-mail at ahsan@cs.duke.edu



Time Complexity of our Adiabatic 
Quantum Computing Algorithm

• Adiabatic Quantum computing CAN solve 
problem hard optimization problems such that problem hard optimization problems such that 
the evolution of Hamiltonians takes 
CONSTANT TIME.

• This idea is not new since Andercut and Ali 
2004 showed similar result for searching in 
item in unstructured database. 



Important questions and Important quest ons and 
Future Work

• How efficiently can we prepare Hamiltonians.

• Study Non linear evolution of Hamiltonians.

A   kl  i l b  f i  • Attempt to tackle exponential number of constraints 
in a linear program using quantum computer.

• Build general purpose Quantum computer.



THANK YOU
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