
What is Quantum Computing?

• Particles on a very small scale (e.g. electrons), do
not follow classical mechanics. Instead, they show
a different set of laws, which we call quantum
mechanics.

• Quantum compuing tries to represent data using
quantum properties, and those laws, and perform
(quantum) operations on this data.

• For e.g., superposition and entanglement are two
quantum properties exhibited at the small scale
only.

Basic Terms

Classical Bit.

• Take a regular bit b.

• b can only have a value of 0 or 1. i.e., it is present in exactly 1 of 2
states.

• Hence b = 0 OR b = 1.

Qubit

• However, a qubit q is like a vector on the unit circle.

q = αi + βj

• It is present in both states 0 and 1.

• Probability of being present in state 0 = α2.

• Probability of being present in state 1 = β2.

• In other words, a qubit is a combination of the states 0 and 1. It can
have any values for α and β such that α2 + β2 = 1.

Basic Terms

Classical 2-bit system.

• Take a variable X, which can be formed from 2-bits.

• Hence, X = a1 a2.

• At any point of time, X only has 1 of 22 possible values.

• e.g. X = 01. (it could also be 00, 10 or 11).

2-Qubit System.

• In a 2-qubit system, the value of the qubit, is a combination of ALL 4 states.

• X = a |00> + b |01 + c |10> + d |11>.

• Hence, think of it like, some part of X is present in 00, some part in 01 and so
on.

• Here, the probability of X being in state 00 is a2, of being in state 01 is b2 and so
on.

• a2 + b2 + c2 + d2 = 1.

• This is similar to X being a 4D unit vector.

Superposition

• This concept of a qubit being present in all 4 states, with a certain probability of
being in each state, is called superposition.

Representation of a Qubit

• Since a qubit exists in multiple states, it is represented as follows.

• Here, and are the orthonormal basis. They are defined

in matrix form as:

• Similarly, for a n-qubit system, there are 2n orthonormal basis. For

e.g., for a 2-qubit system, these are

Quantum Gates vs Classical Gates

• Classical Not gate

• Quantum Gates

• One gate is called the Pauli-X gate. It is the equivalent of a NOT
gate.

P =

• For e.g., say a qubit

• Then, P * = =

More Quantum Gates (universal)

• The three basic classical gates, AND, OR and NOT can be used to
solve any classical function of the form

• Hence, together they can be combined to do universal classical
computation.

• A NAND gate can be used to simulate all the three gates, and hence
it can also be used to do universal computation.

• Similar to this, there is a gate, called the Toffoli gate, which is
reversible. Quantum computers can only simulate reversible gates.
Since a quantum computer can execute the toffoli gate, it can also
be used to do universal classical computation.

How to evaluate a function f
Classical Computation

• A classical gate takes input as 0101, and gives output as 10.

Quantum Computation

• When a quantum gate takes input (say 010), it gives the output as a

superposition of multiple states, and not a single state.

Why is this helpful?

• Since there is a gate, (Toffoli Gate) which is universal, a quantum

computer can do every computation that a classical computer can

do.

• However, when using a quantum gate, we get the output as a

superposition of multiple states, and not a single state. This is

exploited to achieve faster results, than what we can achieve by

using a classical gate.

Quantum Oracle

• In our program, we will also use what is
called the quantum oracle.

• An oracle is the portion of an algorithm which can be
regarded as a “black box” whose behavior can be
relied upon

– Theoretically, its implementation does not need to be
specified

– However, in practice, the implementation must be
considered

Quantum Oracle…

• Why do we use oracles?

– Conceptually simplifies algorithms

– An oracle hides the details of the implementation, and allows us

to focus on the algorithm.

• An oracle can be made up of quantum gates, or it can be made up

of classical gates. An oracle, given any input X, gives us the output

f(X).

Measuring a quantum state.

• When we try to measure the value of a quantum state, it collapses to

a single basis, just like a regular classical bit.

• A quantum algorithm with classical inputs has to find a way to evolve

them into near-classical outputs again for efficient read-out, even

though the intermediate state of the system will be decidedly

unclassical.

DEALING INTEGER
PROGRAMS WITH

ADIABATIC QUANTUM
COMPUTING

Outcome of this Research
Project

• We develop model of adiabatic quantum computing. We can
simulate small adiabatic quantum computer on MATLAB.

• Our model of adiabatic quantum computing produces results that
are in accordance with research papers describing state of the
art research in Adiabatic quantum computing.

• We are able to describe general mechanism of solving integer
programs using adiabatic quantum computer.

• We are able to show that adiabatic quantum computer can solve
optimization problem in constant time adiabatic evolution.

Schrödinger's Equation

()
() ()d

d t
ih t H t 

•h stands for Plank’s constant

•Operator H stands for Hamiltonian.

•What does Hamiltonian do?

•Hamiltonian describes energy contents of the
system. How?

Schrödinger's Equation

• How to solve Schrödinger's equation?

• The solution of Schrödinger's equation is

() exp (0)
iHt

t
h

 
 

  
 

• Evolution of one quantum state to another is
Unitary.

• Possible when Hamiltonian is a Hermitian
Matrix.

Hamiltonian

• Hamiltonian is an operator which we represent by a Hermitian
matrix.

• Eigen values of Hamiltonian represent spectrum of possible
energy levels (states) of a quantum system.

• The eigenvector (eigenstate) associated with is the lowest eigen-
value energy is the ground state of the Hamiltonian.

• What is the lowest eigenstate

(ground state) of this Hamiltonian?

5 0 0

0 1 0

0 0 3

H

 
  
 
   

[1 0 0]'X 

Classical Optimization in terms of

Quantum states
Given: f: {0,1}n

 N, f(x) for =x1,…..xn,
Objective: find xmin which minimizes f

|x> are the eigenvectors
f(x) are the eigenvalues
The answer = state with minimal eigenvalue

000

111

()

.

.

.

()

f x

H

f x

 
 
 
 
 
 
 
 

Ground state solution

• Which  spin distribution
maximizes the number of red
edges?

• Analogous to a combinatorial
optimization problem.

• Lowest energy question for
magnetic materials.

The ground state of the magnet is solution to our
optimization problem!

Courtesy Dorit Aharonov
UC Berkeley

Adiabatic Evolution

)0(|

2

1
min { ()}

s
t

T



1 0() () ()t E t E t  

| ()
() | ()

d t

dt
i H t t




Adiabatic theorem: [BornFock ’28, Kato ’51]

Ground state of H(0) Ground state of H(T)| ()T| (0)

H(0) H(T)

Let us start our project

• Imagine there are m bidders:

1 2 3, , ,...., mB B B B

• Suppose there are n items

1 2 3, , ,...., nI I I I

• The auctioneer will accept bids that maximizes his
payoff.

Quantum Auctions

• An auctioneer gives p qubits to each bidder.

• The initial state of all qubits is |000..0>

• We can parse our quantum register |x> as
follows

1 2 mx = Item#,bidder _bid ; Item#,bidder _bid;....;Item#,bidder _bid

Quantum Auctions

• Let us mention some rules
– Bidders will prepare their respective qubits

and hand them over to the auctioneer.

– Auctioneer cannot assign same item to
multiple bidders.

– Such an assignment sill be infeasible.

– Auctioneer will select payoffs from
available feasible quantum states that we
describe next.

Example of Superposition of Bids

• Suppose we have two bidder B1 and B2 and 1 item

• Bidder1 puts $2 on the item while Bidder2 puts $3 on
the item

• The resulting state of |x> will be

1

2

00 10
00

2

00 11
00

2

U

U







 for Bidder1

 for Bidder2

Superposition

• The resulting state of |x> will be the superposition of
qubits prepared by Bidder1 and that by Bidder2. That
is,

0000 0011 1000 1011

2
x

  


• In vector form

1
[1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0]

2

Tx 

Infeasible

Preparing Hamiltonians

• Initial Hamiltonian W will contain entries
corresponding to the number of ones in each
quantum state.

{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}W diag

• Final Hamiltonian Hf will contain diagonal
entries corresponding to –ve of payoffs for
each quantum bid state.

{0,1,2,3,1,0,0,0,2,0,0,0,3,0,0,0}fH diag 

Preparing Hamiltonian

• We want |x> to be the ground state of W.

• Is this really the case?

• No!

• So we modify our initial Hamiltonian as

†

1 2

iH UWU

U U U



 

• So that now |x> is the lowest eigenstate of Hi

Quantum Auction Protocol

• Start with |x> the ground state of Hi.

• Change Hi slowly so that it becomes Hf

• When Hamiltonian is changing |x> is also changing.

• The final state |x> will be the ground state of Hf
which encodes our solution.

• Auctioneer will measure the final state and announce
the winner.

QUANTUM AUCTIONS
PROTOCOL

)0(|

2

1
min { ()}

s
t

T



1 0() () ()t E t E t  

() (1) i fH s s H sH  

Ground state of H(0) Ground state of H(f)| x| x

Solution

iH H fH H

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

payoff

p
ro

b
a
b
ili

ty
 o

f
g
e
tt

in
g
 t

h
is

 p
a
y
o
ff

DEMO OUTPUT

DEMO

LET US SEE MATLAB
DEMONSTRATION OF QUANTUM

AUCTION PROTOCOL

Quantum Computer and Integer
Programming

• Previous example gives insight into
quantum computer solving small integer
program namely: Auction winner
determination problem.

• Can we extend this approach to solve
integer programs in general???

Quantum Computer and Integer
Programming

• Good News
– It turns out that we can use quantum computer

solve integer programs using Adiabatic quantum
computing. How?

– Can we generalize the procedure we followed in the
last example.

Quantum Computer and Integer
Programming

• Prepare Hf the final Hamiltonian which encodes our
solution. Can we do this efficiently?

– For 2^d possible values of input variables, we can
calculate corresponding objective values using
single black box query!

– If this is done using NMR Quanutum information
processor, the corresponding 2^d objective values
appear as frequency peaks on NMR spectrometer.

– These frequencies correspond to eigen values since
Energy ~ frequency

Quantum Computer and Integer
Programming

• Prepare Hc the constraint Hamiltonian containing 1, -1
entries. The ith entry of this Hamiltonian is 1 if
corresponding combination of variable values which is
infeasible. How to do this

– Out of 2^d possible values of input variables, we
can determine what combinations of variable values
are infeasible using single query to quantum black
box!

– If this is done using NMR Quantum information
processor, the mixture of feasible and infeasible
states appear as frequency peaks with
corresponding phase shifted (0 or 180) on NMR
spectrometer.

Quantum Computer and Integer

Programming

• Prepare |x> using superposition of all input
variable values. |x> is the initial state of our
system.

• Evolve Hc to Hm. This evolution is simple. The
intermediate Hamiltonian Hm has eigen values
same as those of Hc but only incremented by 1.

• Evolve Hm to Hf and measure the final state
which encodes our solution.

Quantum Computer and Integer
Programming

• Adiabatic Quantum Computer solving Integer
Program

cH H mH H fH H

c n nH H sI   (1) m fH s H H  

Phase 1: Removal of Infeasible
States from superposition

Phase 2: Selecting Best feasible
state from filtered superposition

INITIAL
x

OPTIMAL
x

FEASIBLE
x

Let us Solve Maximum Weight
Independent Set Problem using QC

1

2

3 4

5

W=1

W=9

W=4 W=3

W=11

Maximum Weight of Independent vertices is : 15

DEMO

• Let us see MATLAB demonstration of
Adiabatic quantum computer solving
Maximum weight independent set of the
graph.

DEMO OUTPUT

-20 -15 -10 -5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Maximum weight

p
ro

b
a
b
ili

ty
 o

f
g
e
tt

in
g
 t

h
is

 w
e
ig

h
t

How efficient is Adiabatic
Quantum Computation

• The good news is that time spent in the
evolution of Hamiltonian doesn’t depend upon
the size of Hamiltonian!!!

• Time depends on the difference between two
lowest eigenvalues also known as spectral gap.

2

1
min { ()}

s
t

T



1 0() () ()t E t E t  

How efficient is Adiabatic
Quantum Computation

• Time spent in evolution depends ONLY on
difference between two smallest normalized
Eigenvalues of evolving Hamiltonian.

• Time spent in evolution DOESNOT depend on
the number of qubits i.e. size of the problem
as such.

• Can we show this?

How efficient is Adiabatic
Quantum Computation

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time units spend in evolution

p
ro

b
a
b
ili

ty
 o

f
m

e
a
s
u
ri
n
g
 c

o
rr

e
c
t

s
o
lu

ti
o
n

Hamiltonian [2x2], spectral gap: 0.05

Hamiltonian [4x4],spectral gap: 0.05

Hamiltonian [8x8],spectral gap: 0.05

Hamiltonian [16x16],spectral gap: 0.05

Efficiency of Hamiltonian

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time units

p
ro

b
a
b
ili

ty
 o

f
m

e
a
s
u
ri
n
g
 c

o
rr

e
c
t

s
o
lu

ti
o
n

Smaller Hamiltonian [2X2], spectral gap: 0.05

Bigger Hamiltonian [8X8],spectral gap: 1

Time Complexity of our Adiabatic
Quantum Computing Algorithm

• Bad News:

– As we increase size of the problem the normalized
spectral gap can decrease exponentially in terms
of number of qubits!

• Good News:

– We can nullify the exponential decrease in the
spectral gap by exponentially increasing the
eigenvalues!

Time Complexity of our Adiabatic
Quantum Computing Algorithm

• In our Maximum weight problem, the eigenvalues of
final Hamiltonian may not be simply the sum of
feasible combinations of the weights of vertices.

• We can set eigenvalues to be the exponent of sum of
feasible weights.

• The resulting quantum algorithm is implemented in
LIP_Final2_mod.m

Variation in spectral Gap

0 10 20 30 40 50 60
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time units

n
o
rm

a
liz

e
d
 s

p
e
c
tr

a
l
g
a
p

variation of spectral gap

Variation in spectral gap
with exponentiated eigenvlaues

0 10 20 30 40 50 60
0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

Time units

n
o
rm

a
liz

e
d
 s

p
e
c
tr

a
l
g
a
p

variation of spectral gap

exponentiated eigenvalues

How to test our simulation

• Please remember you will be simulating a quantum computer on
classical computer.

• How to measure time spent in evolution?

• So we have fixed time step of 1/50. (You can decrease that if
you want to)

– Add more vertices by adding more weights to the weight
vector.

– The output should contain only 1 long stem regardless of how
many vertices you add.

– If this is not the case then adiabatic evolution wasn’t
completed in constant time. In such a situation please drop
me an e-mail at ahsan@cs.duke.edu

Time Complexity of our Adiabatic
Quantum Computing Algorithm

• Adiabatic Quantum computing CAN solve
problem hard optimization problems such that
the evolution of Hamiltonians takes
CONSTANT TIME.

• This idea is not new since Andercut and Ali
2004 showed similar result for searching in
item in unstructured database.

Important questions and
Future Work

• How efficiently can we prepare Hamiltonians.

• Study Non linear evolution of Hamiltonians.

• Attempt to tackle exponential number of constraints
in a linear program using quantum computer.

• Build general purpose Quantum computer.

THANK YOU

