
What is Quantum Computing?

• Particles on a very small scale (e.g. electrons), do 
not follow classical mechanics. Instead, they show 
a different set of laws, which we call quantum 
mechanics.

• Quantum compuing tries to represent data using 
quantum properties, and those laws, and perform 
(quantum) operations on this data. 

• For e.g., superposition and entanglement are two 
quantum properties exhibited at the small scale 
only.



Basic Terms

Classical Bit.

• Take a regular bit b.

• b can only have a value of 0 or 1. i.e., it is present in exactly 1 of 2 
states.

• Hence b = 0 OR b = 1.

Qubit

• However, a qubit q is like a vector on the unit circle.

q = αi + βj 

• It is present in both states 0 and 1.

• Probability of being present in state 0 = α2.

• Probability of being present in state 1 = β2.

• In other words, a qubit is a combination of the states 0 and 1. It can 
have any values for α and β such that α2 + β2 = 1.



Basic Terms

Classical 2-bit system.

• Take a variable X, which can be formed from 2-bits.

• Hence, X = a1 a2.

• At any point of time, X only has 1 of 22 possible values.

• e.g. X = 01. (it could also be 00, 10 or 11).

2-Qubit System.

• In a 2-qubit system, the value of the qubit, is a combination of ALL 4 states.

• X =  a |00> + b |01 + c |10> + d |11>.

• Hence, think of it like, some part of X is present in 00, some part in 01 and so 
on.

• Here, the probability of X being in state 00 is a2, of being in state 01 is b2 and so 
on.

• a2 + b2 + c2 + d2 = 1.

• This is similar to X being a 4D unit vector.

Superposition

• This concept of a qubit being present in all 4 states, with a certain probability of 
being in each state, is called superposition.



Representation of a Qubit

• Since a qubit exists in multiple states, it is represented as follows. 

• Here,           and            are the orthonormal basis. They are defined 

in matrix form as:

• Similarly, for a n-qubit system, there are 2n orthonormal basis. For 

e.g., for a  2-qubit system, these are 



Quantum Gates vs Classical Gates

• Classical Not gate

• Quantum Gates

• One gate is called the Pauli-X gate. It is the equivalent of a NOT 
gate.

P = 

• For e.g., say a qubit

• Then,   P *         =                          = 



More Quantum Gates (universal)

• The three basic classical gates, AND, OR and NOT can be used to 
solve any classical function of the form 

• Hence, together they can be combined to do universal classical 
computation.

• A NAND gate can be used to simulate all the three gates, and hence 
it can also be used to do universal computation.

• Similar to this, there is a gate, called the Toffoli gate, which is 
reversible. Quantum computers can only simulate reversible gates. 
Since a quantum computer can execute the toffoli gate, it can also 
be used to do universal classical computation.



How to evaluate a function f
Classical Computation

• A classical gate takes input as 0101, and gives output as 10.

Quantum Computation

• When a quantum gate takes input (say 010), it gives the output as a 

superposition of multiple states, and not a single state.



Why is this helpful?

• Since there is a gate, (Toffoli Gate) which is universal, a quantum 

computer can do every computation that a classical computer can 

do.

• However, when using a quantum gate, we get the output as a 

superposition of multiple states, and not a single state. This is 

exploited to achieve faster results, than what we can achieve by 

using a classical gate.



Quantum Oracle

• In our program, we will also use what is 
called the quantum oracle.

• An oracle is the portion of an algorithm which can be 
regarded as a “black box” whose behavior can be 
relied upon

– Theoretically, its implementation does not need to be 
specified

– However, in practice, the implementation must be 
considered



Quantum Oracle…

• Why do we use oracles?

– Conceptually simplifies algorithms

– An oracle hides the details of the implementation, and allows us 

to focus on the algorithm.

• An oracle can be made up of quantum gates, or it can be made up 

of classical gates. An oracle, given any input X, gives us the output 

f(X).



Measuring a quantum state.

• When we try to measure the value of a quantum state, it collapses to 

a single basis, just like a regular classical bit.

• A quantum algorithm with classical inputs has to find a way to evolve 

them into near-classical outputs again for efficient read-out, even 

though the intermediate state of the system will be decidedly 

unclassical.



DEALING INTEGER 
PROGRAMS WITH 

ADIABATIC QUANTUM 
COMPUTING 



Outcome of this Research 
Project

• We develop model of adiabatic quantum computing. We can 
simulate small adiabatic quantum computer on MATLAB.

• Our model of adiabatic quantum computing produces results that 
are in accordance with research papers describing state of the 
art research in Adiabatic quantum computing.

• We are able to describe general mechanism of solving integer 
programs using adiabatic quantum computer.

• We are able to show that adiabatic quantum computer can solve 
optimization problem in constant time adiabatic evolution.



Schrödinger's Equation

( )
( ) ( )d

d t
ih t H t 

•h stands for Plank’s constant

•Operator H stands for Hamiltonian. 

•What does Hamiltonian do?

•Hamiltonian describes energy contents of the  
system. How?



Schrödinger's Equation

• How to solve Schrödinger's equation?

• The solution of Schrödinger's equation is 

( ) exp (0)
iHt

t
h

 
 

  
 

• Evolution of one quantum state to another is 
Unitary.

• Possible when Hamiltonian is a Hermitian 
Matrix.



Hamiltonian

• Hamiltonian is an operator which we represent by a Hermitian 
matrix.

• Eigen values of Hamiltonian represent spectrum of possible 
energy levels (states) of a quantum system.

• The eigenvector (eigenstate) associated with is the lowest eigen-
value energy is the ground state of the Hamiltonian.

• What is the lowest eigenstate 

(ground state) of this Hamiltonian?
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Classical Optimization in terms of 

Quantum states
Given: f: {0,1}n 

 N,  f(x) for =x1,…..xn, 
Objective: find xmin which minimizes f

|x>      are the eigenvectors
f(x)    are the eigenvalues
The answer = state with minimal eigenvalue 

000

111

( )

.

.

.

( )

f x

H

f x

 
 
 
 
 
 
 
 



Ground state solution

• Which  spin distribution 
maximizes the number of red 
edges?

• Analogous to a combinatorial 
optimization problem.

• Lowest energy question for 
magnetic materials.

The ground state of the magnet is solution to our 
optimization problem!

Courtesy Dorit Aharonov
UC Berkeley



Adiabatic Evolution
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Adiabatic theorem: [BornFock ’28, Kato ’51]

Ground state of H(0) Ground state of H(T)| ( )T| (0)

H(0) H(T)



Let us start our project

• Imagine there are m bidders:

1 2 3, , ,...., mB B B B

• Suppose there are n items 

1 2 3, , ,...., nI I I I

• The auctioneer will accept bids that maximizes his 
payoff.



Quantum Auctions

• An auctioneer gives p qubits to each bidder.

• The initial state of all qubits is  |000..0>

• We can parse our quantum register |x> as 
follows

1 2 mx = Item#,bidder _bid ; Item#,bidder _bid;....;Item#,bidder _bid



Quantum Auctions

• Let us mention some rules 
– Bidders will prepare their respective qubits 

and hand them over to the auctioneer.

– Auctioneer cannot assign same item to 
multiple bidders.

– Such an assignment sill be infeasible.

– Auctioneer will select payoffs from 
available feasible quantum states that we 
describe next.



Example of Superposition of Bids

• Suppose we have two bidder B1 and B2 and 1 item

• Bidder1 puts $2 on the item while Bidder2 puts $3 on 
the item

• The resulting state of |x> will be

1

2

00 10
00

2

00 11
00

2

U

U





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 for Bidder1

 for Bidder2



Superposition

• The resulting state of |x> will be the superposition of 
qubits prepared by Bidder1 and that by Bidder2. That 
is,

0000 0011 1000 1011

2
x

  


• In vector form

1
[1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0]

2

Tx 

Infeasible



Preparing Hamiltonians

• Initial Hamiltonian W will contain entries 
corresponding to the number of ones in each 
quantum state.

{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}W diag

• Final Hamiltonian Hf will contain diagonal 
entries corresponding to –ve of payoffs for 
each quantum bid state.

{0,1,2,3,1,0,0,0,2,0,0,0,3,0,0,0}fH diag 



Preparing Hamiltonian

• We want |x> to be the ground state of W.

• Is this really the case?

• No!

• So we modify our initial Hamiltonian as 

†

1 2

iH UWU

U U U



 

• So that now |x> is the lowest eigenstate of Hi



Quantum Auction Protocol

• Start with |x> the ground state of Hi.

• Change Hi slowly so that it becomes Hf

• When Hamiltonian is changing |x> is also changing.

• The final state |x> will be the ground state of Hf 
which encodes our solution.

• Auctioneer will measure the final state and announce 
the winner.



QUANTUM AUCTIONS 
PROTOCOL
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DEMO

LET US SEE MATLAB 
DEMONSTRATION OF QUANTUM 

AUCTION PROTOCOL



Quantum Computer and Integer 
Programming

• Previous example gives insight into 
quantum computer solving small integer 
program namely: Auction winner 
determination problem.

• Can we extend this approach to solve 
integer programs in general???



Quantum Computer and Integer 
Programming

• Good News
– It turns out that we can use quantum computer 

solve integer programs using Adiabatic quantum 
computing. How?

– Can we generalize the procedure we followed in the 
last example.



Quantum Computer and Integer 
Programming

• Prepare Hf the final Hamiltonian which encodes our 
solution. Can we do this efficiently?

– For 2^d possible values of input variables, we can 
calculate corresponding objective values using 
single black box query!

– If this is done using NMR Quanutum information 
processor, the corresponding 2^d objective values 
appear as frequency peaks on NMR spectrometer.

– These frequencies correspond to eigen values since 
Energy ~ frequency



Quantum Computer and Integer 
Programming

• Prepare Hc the constraint Hamiltonian containing 1, -1 
entries. The ith entry of this Hamiltonian is 1 if 
corresponding combination of variable values which is 
infeasible. How to do this

– Out of 2^d possible values of input variables, we 
can determine what combinations of variable values 
are infeasible using single query to quantum black 
box!

– If this is done using NMR Quantum information 
processor, the mixture of feasible and infeasible 
states appear as frequency peaks with 
corresponding phase shifted (0 or 180) on NMR 
spectrometer.



Quantum Computer and Integer 

Programming

• Prepare |x> using superposition of all input 
variable values. |x> is the initial state of our 
system.

• Evolve Hc to Hm. This evolution is simple. The 
intermediate Hamiltonian Hm has eigen values 
same as those of Hc but only incremented by 1.

• Evolve Hm to Hf and measure the final state 
which encodes our solution. 



Quantum Computer and Integer 
Programming

• Adiabatic Quantum Computer solving Integer 
Program

cH H mH H fH H

c n nH H sI   (1 ) m fH s H H  

Phase 1: Removal of Infeasible 
States from superposition

Phase 2: Selecting Best feasible 
state from filtered superposition

INITIAL
x

OPTIMAL
x

FEASIBLE
x



Let us Solve Maximum Weight 
Independent Set Problem using QC

1

2

3 4

5

W=1

W=9

W=4 W=3

W=11

Maximum Weight of Independent vertices is : 15



DEMO

• Let us see MATLAB demonstration of 
Adiabatic quantum computer solving 
Maximum weight independent set of the 
graph.



DEMO OUTPUT
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How efficient is Adiabatic 
Quantum Computation

• The good news is that time spent in the 
evolution of Hamiltonian doesn’t depend upon 
the size of Hamiltonian!!!

• Time depends on the difference between two 
lowest eigenvalues also known as spectral gap.
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How efficient is Adiabatic 
Quantum Computation

• Time spent in evolution depends ONLY on 
difference between two smallest normalized 
Eigenvalues of evolving Hamiltonian.

• Time spent in evolution DOESNOT depend on 
the number of qubits i.e. size of the problem 
as such.

• Can we show this?



How efficient is Adiabatic 
Quantum Computation
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Hamiltonian [2x2], spectral gap: 0.05

Hamiltonian [4x4],spectral gap: 0.05

Hamiltonian [8x8],spectral gap: 0.05

Hamiltonian [16x16],spectral gap: 0.05



Efficiency of Hamiltonian
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Smaller Hamiltonian [2X2], spectral gap: 0.05

Bigger Hamiltonian [8X8],spectral gap: 1



Time Complexity of our Adiabatic 
Quantum Computing Algorithm

• Bad News:

– As we increase size of the problem the normalized 
spectral gap can decrease exponentially in terms 
of number of qubits!

• Good News:

– We can nullify the exponential decrease in the 
spectral gap by exponentially increasing the 
eigenvalues!



Time Complexity of our Adiabatic 
Quantum Computing Algorithm

• In our Maximum weight problem, the eigenvalues of 
final Hamiltonian may not be simply the sum of 
feasible combinations of the weights of vertices. 

• We can set eigenvalues to be the exponent of sum of 
feasible weights.  

• The resulting quantum algorithm is implemented in 
LIP_Final2_mod.m



Variation in spectral Gap
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Variation in spectral gap
with exponentiated eigenvlaues
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How to test our simulation

• Please  remember you will be simulating a quantum computer on 
classical computer.

• How to measure time spent in evolution?

• So we have fixed time step of 1/50. (You can decrease that if 
you want to)

– Add more vertices by adding more weights to the weight 
vector.

– The output should contain only 1 long stem regardless of how 
many vertices you add. 

– If this is not the case then adiabatic evolution wasn’t 
completed in constant time. In such a situation please drop 
me an e-mail at ahsan@cs.duke.edu



Time Complexity of our Adiabatic 
Quantum Computing Algorithm

• Adiabatic Quantum computing CAN solve 
problem hard optimization problems such that 
the evolution of Hamiltonians takes 
CONSTANT TIME.

• This idea is not new since Andercut and Ali 
2004 showed similar result for searching in 
item in unstructured database. 



Important questions and 
Future Work

• How efficiently can we prepare Hamiltonians.

• Study Non linear evolution of Hamiltonians.

• Attempt to tackle exponential number of constraints 
in a linear program using quantum computer.

• Build general purpose Quantum computer.



THANK YOU


