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Mechanism design: setting
• The center has a set of outcomes O that she can 

choose from
Allocations of tasks/resources joint plans– Allocations of tasks/resources, joint plans, …

• Each agent i draws a type θi from Θi
– usually, but not necessarily, according to some probability y, y, g p y

distribution
• Each agent has a (commonly known) valuation 

f nction Θ O function vi: Θi x O → 
– Note: depends on θi, which is not commonly known

• The center has some objective function g: Θ x O → • The center has some objective function g: Θ x O → 
– Θ = Θ1 x ... x Θn
– E.g., efficiency (Σi vi(θi, o))
– May also depend on payments (more on those later)
– The center does not know the types



What should the center do?
• She would like to know the agents’ types to make the 

best decision
• Why not just ask them for their types?
• Problem: agents might lie
• E.g., an agent that slightly prefers outcome 1 may say 

that outcome 1 will give him a value of 1,000,000 and 
thi l ill i hi l f 0 t f theverything else will give him a value of 0, to force the 

decision in his favor
• But maybe if the center is clever about choosing• But maybe, if the center is clever about choosing 

outcomes and/or requires the agents to make some 
payments depending on the types they report thepayments depending on the types they report, the 
incentive to lie disappears…



Quasilinear utility functions
• For the purposes of mechanism design, we will 

assume that an agent’s utility forassume that an agent s utility for 
– his type being θi,
– outcome o being chosen– outcome o being chosen, 
– and having to pay πi,

can be written as v (θ o) πcan be written as vi(θi, o) - πi

• Such utility functions are called quasilinear
• Some of the results that we will see can be 

generalized beyond such utility functions, but 
we will not do so



Definition of a (direct-revelation) mechanism

• A deterministic mechanism without payments is a 
mapping o: Θ → O

• A randomized mechanism without payments is a 
mapping o: Θ → ∆(O)

∆(O) i th t f ll b bilit di t ib ti O– ∆(O) is the set of all probability distributions over O
• Mechanisms with payments additionally specify, for 

each agent i a payment function π : Θ → each agent i, a payment function πi : Θ → 
(specifying the payment that that agent must make)

• Each mechanism specifies a Bayesian game for• Each mechanism specifies a Bayesian game for 
the agents, where i’s set of actions Ai = Θi
– We would like agents to use the truth-telling strategy g g gy

defined by s(θi) = θi



The Clarke (aka. VCG) mechanism [Clarke 71]

• The Clarke mechanism chooses some outcome o that 
maximizes Σi vi(θi’, o)
– θi’ = the type that i reports

• To determine the payment that agent j must make:
Pretend j does not exist and choose o that maximizes Σ– Pretend j does not exist, and choose o-j that maximizes Σi≠j 
vi(θi’, o-j)

– j pays Σi≠j vi(θi’, o-j) - Σi≠j vi(θi’, o) = Σi≠j (vi(θi’, o-j) - vi(θi’, o)) j j j j j

• We say that each agent pays the externality that she 
imposes on the other agentsimposes on the other agents

• (VCG = Vickrey Clarke Groves)• (VCG = Vickrey, Clarke, Groves)



Incentive compatibility
• Incentive compatibility (aka. truthfulness) = there is 

never an incentive to lie about one’s type
• A mechanism is dominant-strategies incentive• A mechanism is dominant-strategies incentive 

compatible (aka. strategy-proof) if for any i, for any 
type vector θ1, θ2, …, θi, …, θn, and for any alternative 
type θ ’ we havetype θi , we have
vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn) ≥
vi(θi, o(θ1, θ2, …, θi’, …, θn)) - πi(θ1, θ2, …, θi’, …, θn)vi(θi, o(θ1, θ2, …, θi , …, θn)) πi(θ1, θ2, …, θi , …, θn)

• A mechanism is Bayes-Nash equilibrium (BNE) 
incentive compatible if telling the truth is a BNE, that 
is for any i for any types θ θ ’is, for any i, for any types θi, θi , 
Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, 
…, θn)] ≥n)]
Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi’, …, θn)) - πi(θ1, θ2, …, 
θi’, …, θn)]



The Clarke mechanism is strategy-proof
T t l tilit f t j i• Total utility for agent j is 
vj(θj, o) - Σi≠j (vi(θi’, o-j) - vi(θi’, o)) =
v (θ o) + Σ v (θ ’ o) Σ v (θ ’ o )vj(θj, o) + Σi≠j vi(θi , o) - Σi≠j vi(θi , o-j) 

• But agent j cannot affect the choice of o-j
• Hence j can focus on maximizing v (θ o) + Σ• Hence, j can focus on maximizing vj(θj, o) + Σi≠j 

vi(θi’, o)
• But mechanism chooses o to maximize Σi vi(θi’, o)But mechanism chooses o to maximize Σi vi(θi , o)
• Hence, if θj’ = θj, j’s utility will be maximized!

• Extension of idea: add any term to agent j’s 
payment that does not depend on j’s reported type

• This is the family of Groves mechanisms [Groves 73]



Individual rationality
• A selfish center: “All agents must give me all their 

money.” – but the agents would simply not participate
If t ld t ti i t th t th h i– If an agent would not participate, we say that the mechanism 
is not individually rational

• A mechanism is ex-post individually rational if for any p y y
i, for any type vector θ1, θ2, …, θi, …, θn, we have
vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn) ≥
00

• A mechanism is ex-interim individually rational if for 
any i for any type θany i, for any type θi, 
Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, 
…, θn)] ≥ 0, n)]
– i.e., an agent will want to participate given that he is 

uncertain about others’ types (not used as often)



Additional nice properties of the 
Clarke mechanismClarke mechanism

• Ex-post individually rational, assuming:p y , g
– An agent’s presence never makes it impossible to 

choose an outcome that could have been chosen if 
the agent had not been present andthe agent had not been present, and

– No agent ever has a negative value for an outcome 
that would be selected if that agent were not present

• Weakly budget balanced - that is, the sum of the 
payments is always nonnegative - assuming:

If an agent leaves this never makes the combined– If an agent leaves, this never makes the combined 
welfare of the other agents (not considering 
payments) smaller



Generalized Vickrey Auction (GVA) 
(= VCG applied to combinatorial auctions)(= VCG applied to combinatorial auctions)

• Example:
– Bidder 1 bids ({A, B}, 5)({ , }, )
– Bidder 2 bids ({B, C}, 7)
– Bidder 3 bids ({C}, 3)

• Bidders 1 and 3 win total value is 8• Bidders 1 and 3 win, total value is 8
• Without bidder 1, bidder 2 would have won

– Bidder 1 pays 7 - 3 = 4
• Without bidder 3, bidder 2 would have won

– Bidder 3 pays 7 - 5 = 2
• Strategy-proof, ex-post IR, weakly budget balancedgy p , p , y g
• Vulnerable to collusion (more so than 1-item Vickrey auction)

– E.g., add two bidders ({B}, 100), ({A, C}, 100)
What happens?– What happens?

– More on collusion in GVA in [Ausubel & Milgrom 06, Conitzer & Sandholm 06]



Clarke mechanism is not perfect
R i t + ili tilit f ti• Requires payments + quasilinear utility functions

• In general money needs to flow away from the 
systemsystem
– Strong budget balance = payments sum to 0
– In general, this is impossible to obtain in addition to 

the other nice properties [Green & Laffont 77]
• Vulnerable to collusion

E g suppose two agents both declare a ridiculously– E.g., suppose two agents both declare a ridiculously 
large value (say, $1,000,000) for some outcome, and 
0 for everything else.  What will happen?

• Maximizes sum of agents’ utilities (if we do not 
count payments), but sometimes the center is 
not interested in thisnot interested in this
– E.g., sometimes the center wants to maximize 

revenue



Why restrict attention to truthful 
direct revelation mechanisms?direct-revelation mechanisms? 

• Bob has an incredibly complicated mechanism in 
hi h t d t t t b t d ll twhich agents do not report types, but do all sorts 

of other strange things
• E g : Bob: “In my mechanism first agents 1 and 2• E.g.: Bob: In my mechanism, first agents 1 and 2 

play a round of rock-paper-scissors. If agent 1 
wins, she gets to choose the outcome. Otherwise, 
agents 2, 3 and 4 vote over the other outcomes 
using the Borda rule.  If there is a tie, everyone 
pays $100 and ”pays $100, and…

• Bob: “The equilibria of my mechanism produce 
better results than any truthful direct revelation y
mechanism.”

• Could Bob be right?



The revelation principle
• For any (complex, strange) mechanism that 

produces certain outcomes under strategic 
behavior (dominant strategies BNE)behavior (dominant strategies, BNE)…

• … there exists a (dominant-strategies, BNE) 
incentive compatible direct revelation p
mechanism that produces the same outcomes!

P1

new mechanism

mechanism outcome
actions

1

P2

types

P3



Myerson-Satterthwaite impossibility [1983]

Si l tti• Simple setting:

v( ) = x v( ) = y

• We would like a mechanism that:
– is efficient (trade if and only if y > x),( y y ),
– is budget-balanced (seller receives what buyer pays),
– is BNE incentive compatible, and

i i t i i di id ll ti l– is ex-interim individually rational 
• This is impossible!



A few computational issues 
in mechanism designin mechanism design 

• Algorithmic mechanism design
S ti t d d h i t h d t t– Sometimes standard mechanisms are too hard to execute 
computationally (e.g., Clarke requires computing optimal outcome)

– Try to find mechanisms that are easy to execute computationally 
(and nice in other ways) together with algorithms for executing them(and nice in other ways), together with algorithms for executing them

• Automated mechanism design
– Given the specific setting (agents, outcomes, types, priors over 

types ) and the objective have a computer solve for the besttypes, …) and the objective, have a computer solve for the best 
mechanism for this particular setting

• When agents have computational limitations, they will not 
necessarily play in a game theoretically optimal waynecessarily play in a game-theoretically optimal way
– Revelation principle can collapse; need to look at nontruthful 

mechanisms
• Many other things (computing the outcomes in a distributed• Many other things (computing the outcomes in a distributed

manner; what if the agents come in over time (online
setting); …)



General vs specific mechanismsGeneral vs. specific mechanisms

• Mechanisms such as Clarke (VCG) mechanism are• Mechanisms such as Clarke (VCG) mechanism are 
very general…

• … but will instantiate to something specific in any… but will instantiate to something specific in any 
specific setting
– This is what we care about



Example: Divorce arbitrationp

O t• Outcomes:

• Each agent is of high type w.p. .2 and low type g g yp p yp
w.p. .8
– Preferences of high type:

• u(get the painting) = 11 000u(get the painting)  11,000
• u(museum) = 6,000
• u(other gets the painting) = 1,000
• u(burn) = 0( )

– Preferences of low type:
• u(get the painting) = 1,200
• u(museum) = 1,100( ) ,
• u(other gets the painting) = 1,000
• u(burn) = 0



Clarke (VCG) mechanism

lowhigh

high

H b d 200B th 5 000 Husband pays 200Both pay 5,000

low

Both pay 100Wife pays 200 Both pay 100Wife pays 200

Expected sum of divorcees’ utilities = 5,136



“Manual” mechanism design has 
i ld dyielded

• some positive results:• some positive results:
– “Mechanism x achieves properties P in any 

setting that belongs to class C”setting that belongs to class C
• some impossibility results:

“Th i h i th t hi– “There is no mechanism that achieves 
properties P for all settings in class C”



• Design problem instance comes along

Difficulties with manual mechanism design
Design problem instance comes along
– Set of outcomes, agents, set of possible types for each 

agent, prior over types, …
• What if no canonical mechanism covers this instance?

– Unusual objective, or payments not possible, or …
I ibilit lt i t f th l l f– Impossibility results may exist for the general class of 
settings

• But instance may have additional structure (restricted preferences y ( p
or prior) so good mechanisms exist (but unknown)

• What if a canonical mechanism does cover the setting?
C i t ’ t t t t hi h bj ti– Can we use instance’s structure to get higher objective 
value?

– Can we get stronger nonmanipulability/participation g g p y p p
properties?

• Manual design for every instance is prohibitively slow



Automated mechanism design (AMD) 
[Conitzer & Sandholm UAI-02, later papers]

• Idea: Solve mechanism design as optimization 
problem automaticallyproblem automatically 

• Create a mechanism for the specific setting at 
hand rather than a class of settingsg

• Advantages:
– Can lead to greater value of designer’s objective than g g j

known mechanisms
– Sometimes circumvents economic impossibility results 

& always minimizes the pain implied by them& always minimizes the pain implied by them
– Can be used in new settings & for unusual objectives
– Can yield stronger incentive compatibility &Can yield stronger incentive compatibility & 

participation properties
– Shifts the burden of design from human to machine



Classical vs. automated mechanism design
Classical

Prove general 
theorems & publish

Intuitions about
mechanism designp g

Real-world mechanism Build mechanism Mechanism forReal world mechanism
design problem appears

Build mechanism 
by hand

Mechanism for
setting at hand

Build software Automated mechanism

Automated

design software(once)

Real-world mechanism Apply software Mechanism for
design problem appears

Apply software 
to problem

Mechanism for
setting at hand



Input
• Instance is given by

– Set of possible outcomesp
– Set of agents

• For each agent
– set of possible typesset of possible types
– probability distribution over these types

– Objective function
• Gives a value for each outcome for each combination of agents’• Gives a value for each outcome for each combination of agents  

types
• E.g. social welfare, payment maximization

Restrictions on the mechanism– Restrictions on the mechanism
• Are payments allowed?
• Is randomization over outcomes allowed?

Wh t i f i ti tibilit (IC) & i di id l ti lit• What versions of incentive compatibility (IC) & individual rationality 
(IR) are used?



Output
• Mechanism

– A mechanism maps combinations of agents’A mechanism maps combinations of agents  
revealed types to outcomes

• Randomized mechanism maps to probability p p y
distributions over outcomes

• Also specifies payments by agents (if payments 
ll d)allowed)

• … which
– satisfies the IR and IC constraints
– maximizes the expectation of the objective 

f tifunction



Optimal BNE incentive compatible deterministic mechanism 
without payments for maximizing sum of divorcees’ utilities 

lowhigh

high

low

Expected sum of divorcees’ utilities = 5,248



Optimal BNE incentive compatible randomized mechanism 
without payments for maximizing sum of divorcees’ utilities 

lowhigh

high .55 .45

low .57.43

Expected sum of divorcees’ utilities = 5,510



Optimal BNE incentive compatible randomized mechanism with 
payments for maximizing sum of divorcees’ utilities 

lowhigh

high

Wife pays 1 000Wife pays 1,000

low

Expected sum of divorcees’ utilities = 5,688



Optimal BNE incentive compatible randomized mechanism 
with payments for maximizing arbitrator’s revenuep y g

lowhigh

high

H b d 11 250Husband pays 11,250

low

Both pay 250Wife pays 13 750

Expected sum of divorcees’ utilities = 0      Arbitrator expects 4,320

Both pay 250Wife pays 13,750



Modified divorce arbitration example

• Outcomes:
E h t i f hi h t ith b bilit 0 2 d f l• Each agent is of high type with probability 0.2 and of low
type with probability 0.8
– Preferences of high type:

• u(get the painting) = 100
• u(other gets the painting) = 0
• u(museum) = 40

( t th i ) 9• u(get the pieces) = -9
• u(other gets the pieces) = -10

– Preferences of low type:
• u(get the painting) = 2• u(get the painting) = 2
• u(other gets the painting) = 0
• u(museum) = 1.5
• u(get the pieces) = -9u(get the pieces)  9
• u(other gets the pieces) = -10



Optimal dominant-strategies incentive compatible 
randomized mechanism for maximizing expected 

sum of utilities 

lowhigh

high .96 .04.47 .4 .13

low .96 .04



How do we set up the optimization?
• Use linear programmingUse linear programming
• Variables: 

– p(o | θ1, …, θn) = probability that outcome o is chosen given types θ1, …, θn
(ma be) (θ θ ) i’s pa ment gi en t pes θ θ– (maybe) πi(θ1, …, θn) = i’s payment given types θ1, …, θn

• Strategy-proofness constraints: for all i, θ1, …θn, θi’:
Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥ o 1 n i i i 1 n
Σop(o | θ1, …, θi’, …, θn)ui(θi, o) + πi(θ1, …, θi’, …, θn)

• Individual-rationality constraints: for all i, θ1, …θn:
Σ ( | θ θ ) (θ ) + (θ θ ) ≥ 0Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥ 0

• Objective (e.g. sum of utilities)
Σθ1 θnp(θ1, …, θn)Σi(Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn))θ1, …, θnp( 1, , n) i( op( | 1, , n) i( i, ) i( 1, , n))

• Also works for BNE incentive compatibility, ex-interim individual 
rationality notions, other objectives, etc.

• For deterministic mechanisms se mi ed integer programming• For deterministic mechanisms, use mixed integer programming 
(probabilities in {0, 1})
– Typically designing the optimal deterministic mechanism is NP-hard



Computational complexity of automatically 
designing deterministic mechanismsdesigning deterministic mechanisms

• Many different variants
– Objective to maximize: Social welfare/revenue/designer’s 

agenda for outcome
– Payments allowed/not allowedPayments allowed/not allowed
– IR constraint: ex interim IR/ex post IR/no IR
– IC constraint: Dominant strategies/Bayes-Nash equilibriumg y q

• The above already gives 3 * 2 * 3 * 2 = 36 variants
• Approach: Prove hardness for the case of only 1 pp y

type-reporting agent
– results imply hardness in more general settings



DSE & BNE incentive compatibility constraints 
coincide when there is only 1 (reporting) agentcoincide when there is only 1 (reporting) agent

Dominant strategies:
Reporting truthfully is optimal

Bayes-Nash equilibrium:
Reporting truthfully is optimalReporting truthfully is optimal 

for any types the others 
report

Reporting truthfully is optimal 
in expectation over the other 

agents’ (true) types

o9o5t11

t22t21

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥
P(t )u (t o ) +

u1(t11,o5) ≥ u1(t11,o3)
AND

o2o3t12o2o3t12

P(t21)u1(t11,o3) +
P(t22)u1(t11,o2)

u1(t11,o9) ≥ u1(t11,o2)

t21

o5t11

u1(t11,o5) ≥ u1(t11,o3)
is equivalent to

With only 1 
reporting agent, 

o3t11
P(t21)u1(t11,o5) ≥ P(t21)u1(t11,o3)

p g g ,
the constraints are 
the same



Ex post and ex interim individual rationality constraints 
coincide when there is only 1 (reporting) agentcoincide when there is only 1 (reporting) agent

Ex post:
Participating never hurts (for

Ex interim:
Participating does not hurt inParticipating never hurts (for 

any types of the other 
agents)

Participating does not hurt in 
expectation over the other 

agents’ (true) types

o9o5t11

t22t21

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥ 0

u1(t11,o5) ≥ 0
AND 

o2o3t12o2o3t12

P(t22)u1(t11,o9) ≥ 0
u1(t11,o9) ≥ 0

t21

o5t11

u1(t11,o5) ≥ 0
is equivalent to

With only 1 
reporting agent,

o3t11

511 q
P(t21)u1(t11,o5) ≥ 0

reporting agent, 
the constraints are 
the same



How hard is designing an optimal
d i i i h i ?deterministic mechanism?

S l bl i l i lNP l t ( ith 1 Solvable in polynomial 
time (for any constant 
number of agents):

NP-complete (even with 1 
reporting agent):

1. Maximizing social 
welfare (not regarding 
the pa ments) (VCG)

1. Maximizing social welfare (no 
payments)

g )

the payments) (VCG)2. Designer’s own utility over 
outcomes (no payments)

3 General (linear) objective that3. General (linear) objective that 
doesn’t regard payments

4. Expected revenue

1 and 3 hold even with no IR constraints



AMD can create optimal (expected-revenue 
maximizing) combinatorial auctionsmaximizing) combinatorial auctions

• Instance 1
2 items 2 bidders 4 types each (LL LH HL HH)– 2 items, 2 bidders, 4 types each (LL, LH, HL, HH)

– H=utility 2 for that item, L=utility 1
– But: utility 6 for getting both items if type HH (complementarity)
– Uniform prior over types
– Optimal ex-interim IR, BNE mechanism (0 = item is burned):
– Payment rule not shownay e t u e ot s o
– Expected revenue: 3.94 (VCG: 2.69)

• Instance 2 2,0
HL

0,2
LH

2,20,0LL
HHLL

– 2 items, 3 bidders
– Complementarity and substitutability
– Took 5.9 seconds 1 1

2,1
2,1 2,21,20,1LH

2,21,21,0HL
1 1 1 11 1HH

– Uses randomization
1,11,1 1,11,1HH



Optimal mechanisms for a public good
AMD d i ti l h i f bli d t ki• AMD can design optimal mechanisms for public goods, taking 
money burning into account as a loss

• Bridge building instanceBridge building instance
– Agent 1: High type (prob .6) values bridge at 10. Low: values at 1
– Agent 2: High type (prob .4) values bridge at 11. Low: values at 2

B id t 6 t b ild– Bridge costs 6 to build

• Optimal mechanism (ex-post IR, BNE):
HighLow Hi hL

Outcome 
rule

Payment 
ruleBuildDon’t 

build
Low

HighLow

0, 60, 0Low
.67, 

High

4, 2High

Low

• There is no general mechanism that achieves budget balance, 
t ffi i d t IR [M S tt th it 83]

BuildBuildHigh 5.33
g

ex-post efficiency, and ex-post IR [Myerson-Satterthwaite 83]
• However, for this instance, AMD found such a mechanism



Combinatorial public goods 
problemsproblems

• AMD for interrelated public goods
• Example: building a bridge and/or a boatExample: building a bridge and/or a boat

– 2 agents each uniform from types: {None, Bridge, Boat, Either}
• Type indicates which of the two would be useful to the agent
• If something is built that is useful to you you get 2 otherwise 0• If something is built that is useful to you, you get 2, otherwise 0

– Boat costs 1 to build, bridge 3

• Optimal mechanism (ex-post IR, dominant strategies):

Outcome rule
(0 5 0 5)
(1,0,0,0)
Bridge

(0 1 0 0)(0 1 0 0)( 5 5 0 0)B t
(0,1,0,0)

Boat
(0,1,0,0)(1,0,0,0)None
EitherNone

(P(none), P(boat), 
P(bridge), P(both))

(0,0,1,0)
(0,0,1,0)
(0,.5,0,.5) (0,1,0,0)(0,1,0,0)(.5,.5,0,0)Boat

(0,0,1,0)(0,1,0,0)(1,0,0,0)Bridge
(0,1,0,0) (0,1,0,0)(.5,.5,0,0)Either

• Again, no money burning, but outcome not always efficient
– E.g., sometimes nothing is built while boat should have been



Additional & future directions
Scalability is a major concern• Scalability is a major concern
– Can sometimes create more concise LP formulations

• Sometimes, some constraints are implied by othersSometimes, some constraints are implied by others

– In restricted domains faster algorithms sometimes exist
• Can sometimes make use of partial characterizations of the optimal 

h imechanism

• Automatically generated mechanisms can be 
complex/hard to understandcomplex/hard to understand
– Can we make automatically designed mechanisms more 

intuitive?
• Using AMD to create conjectures about general 

mechanisms


