Virtual Layer 2: A Scalable and Flexible Data-Center Network

Microsoft Research

Changhoon Kim

Work with Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta

Tenets of Cloud-Service Data Center

- Agility: Assign any servers to any services
 - Boosts cloud utilization
- Scaling out: Use large pools of commodities
 - Achieves reliability, performance, low cost

Statistical Multiplexing Gain

Economies of Scale

What is VL2?

The first DC network that enables agility in a scaled-out fashion

- Why is agility important?
 - Today's DC network inhibits the deployment of other technical advances toward agility
- With VL2, cloud DCs can enjoy agility in full

Status Quo: Conventional DC Network

Reference – "Data Center: Load balancing Data Center Services", Cisco 2004

Conventional DC Network Problems

- Dependence on high-cost proprietary routers
- Extremely limited server-to-server capacity

And More Problems ...

 Resource fragmentation, significantly lowering cloud utilization (and cost-efficiency)

Know Your Cloud DC: Challenges

- Instrumented a large cluster used for data mining and identified distinctive traffic patterns
- Traffic patterns are highly volatile
 - A large number of distinctive patterns even in a day
- Traffic patterns are unpredictable
 - Correlation between patterns very weak

Optimization should be done frequently and rapidly

Know Your Cloud DC: Opportunities

- DC controller knows everything about hosts
- Host OS's are easily customizable
- Probabilistic flow distribution would work well enough, because ...
 - Flows are numerous and not huge no elephants!
 - Commodity switch-to-switch links are substantially thicker (~ 10x) than the maximum thickness of a flow

DC network can be made simple

All We Need is Just a Huge L2 Switch, or an Abstraction of One

Specific Objectives and Solutions

Objective

- 1. Layer-2 semantics
- 2. Uniform high capacity between servers
- 3. Performance Isolation

Approach

Employ flat addressing

Guarantee bandwidth for hose-model traffic

Enforce hose model using existing mechanisms only

Solution

Name-location separation & resolution service

Flow-based random traffic indirection (Valiant LB)

TCP

Addressing and Routing: Name-Location Separation

Cope with host churns with very little overhead

names

Example Topology: Clos Network

Offer huge aggr capacity and multi paths at modest cost

Traffic Forwarding: Random Indirection

Cope with arbitrary TMs with very little overhead

Does VL2 Ensure Uniform High Capacity?

- How "high" and "uniform" can it get?
 - Performed all-to-all data shuffle tests, then measured aggregate and per-flow goodput

Goodput efficiency	94%
Fairness [§] between flows	0.995

[§] Jain's fairness index defined as $(\sum x_i)^2/(n\cdot\sum x_i^2)$

The cost for flow-based random spreading

VL2 Conclusion

- VL2 achieves agility at scale via
 - 1. L2 semantics
 - 2. Uniform high capacity between servers
 - 3. Performance isolation between services

Lessons

- Randomization can tame volatility
- Add functionality where you have control
- There's no need to wait!