
Test 2: Compsci 06

Owen Astrachan

April 13, 2011

Name:

NetID/Login:

Honor code acknowledgment (signature)

value grade
Problem 1 24 pts.

Problem 2 22 pts.

Problem 3 18 pts.

Problem 4 10 pts.

TOTAL: 74 pts.

This test has 10 pages, be sure your test has them all. Do NOT spend too much time on one question —
remember that this class lasts 75 minutes. You should spend roughly one minute per point.

In writing code you do not need to worry about specifying the proper import statements. Don’t worry
about getting function or method names exactly right. Assume that all libraries and packages we’ve discussed
are imported in any code you write.

1

PROBLEM 1 : (Myrmecophagous? 24 points)

Write Python statement(s)/expression(s) to solve each of the problems below.

Consider the list lista below used to illustrate each problem.

lista = ["sloth", "aardvark", "pangolin", "pangolin", \
"aardvark", "sloth", "sloth", "numbat","anteater"]

This list is used to illustrate the problems, but the code you write should work with any values stored in
lista, don’t write code that depends on any particular values stored in the list.

Part A (4 points)

Write Python code that stores in variable uniq the number of different values in lista — this is five in the
example above since the five different strings in lista are ’sloth’, ’aardvark’, ’pangolin’, ’numbat’, ’anteater’.

Part B (4 points)

Write Python code that stores in variable smalls a list of of the strings in lista that have fewer than six
letters in them. This would be ["sloth", "sloth", "sloth"] in the example above. The words in smalls
should be in the same order they appear in lista.

Part C (4 points)

Write Python code that stores in variable most the number of times the most frequently occurring string in
lista occurs — this is three in the example above (for "sloth").

2

Part D (12 points)

Write Python code that stores in variable ordered a list of the unique strings in lista in order from most
frequently occuring to least frequently occuring. Ties should be broken alphabetically, e.g., "aardvark"
appears before "pangolin" in ordered below (using lista as above) because they both occur twice but
"aardvark" comes before "pangolin" alphabetically. Using lista above the values stored in ordered are:

ordered == ["sloth", "aardvark", "pangolin", "anteater", "numbat"]

because the number of occurrences of each of these is 3, 2, 2, 1, and 1, respectively. Note that "anteater"
is alphabetically before "numbat" and both occur one time. (You’ll earn more than half-credit if strings are
ordered correctly by number of occurrences, but you don’t break ties alphabetically.)

3

PROBLEM 2 : (Playing Dice With the Universe (22 points))

Part A (3 points)

This line appeared in the Hangman programs submitted by nearly every student where words is a list of
strings:

secret = random.choice(words)

In a sentence or two explain what the purpose of this line was in the Hangman program.

Part B (3 points)

In the Hangman program a variable display was used by most students to represent what the user is shown
before each guess, e.g., something like _ a _ _ a _ _ for pancake if the user has guessed an ’a’ correctly.

Two different initializations were used by students, both are shown below (students used one or the other,
but not both in the same program).

slen = len(secret)
display = "_"*slen

alternative

slen = len(secret)
display = ["_"]*slen

The first creates a string of underscores, the second creates a list of underscores, in each case of the appropriate
length. Give a reason to prefer one initialization over the other. There is no correct answer here per se, but
you will be evaluated on your justification/reasoning. Be brief.

4

Part C (8 points)

In the Jotto program the function get_guess has the documentation shown below when the module
jottoModel.py is snarfed/copied for the assignment.

def get_guess():
"""
Choose a random word from _possiblewords, remove it from
_possiblewords so it won’t be guessed again, and return it.
Update all state needed to indicate a guess has been made.
"""

Many students wrote lines of code similar to the following for get_guess:

global _guessed, _possiblewords, _gcount
_guessed = random.choice(_possiblewords)
_gcount += 1
return _guessed

First, briefly explain the purpose of each of the four lines of code in the context of playing Jotto with this
code. Be sure you explain the purpose of each global variable and how it is used.

Then, briefly explain why the function shown above may often play the game correctly, but why it does
not satisfy the documentation/comment. In doing so you should explain why this code could result in the
computer guessing “break” several times in a row when the player is thinking of a secret word “baker” that
the computer is trying to guess.

5

Part D (8 points)

Program
The program below generates the output on the right when run,
showing that each simulated dice roll (a,b) occurs roughly the same
number of times. However, the number of times each sum is rolled
is different since there is only one way to roll a two: (1,1), but six
ways to roll a seven: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1). Write
the function get_totals that returns a dictionary in which the key
is a number from 2-12, inclusive, representing the sum of rolling
two simulated dice; the corresponding value is the number of times
the total occurs. The parameter to get_totals is the dictionary
returned by track_rolls.

import random

def get_roll():
return (random.randint(1,6), random.randint(1,6))

def track_rolls(repeats):
d = {}
for x in range(0,repeats):

roll = get_roll()
if roll not in d:

d[roll] = 0
d[roll] += 1

for key in sorted(d.keys()):
print key,d[key]

return d

def main():
d = track_rolls(10000)

if __name__ == "__main__":
main()

For example, adding the line p = get_totals(d) in the function
main and printing the contents of p should result in the output below
given a dictionary storing information as shown on the right (the
output won’t necessarily be sorted by sum):

2 263

3 575

4 875

5 1121

6 1386

7 1627

8 1299

9 1152

10 888

11 531

12 283

Output from Running Program

(1, 1) 263
(1, 2) 283
(1, 3) 289
(1, 4) 261
(1, 5) 293
(1, 6) 270
(2, 1) 292
(2, 2) 297
(2, 3) 269
(2, 4) 297
(2, 5) 270
(2, 6) 254
(3, 1) 289
(3, 2) 284
(3, 3) 272
(3, 4) 245
(3, 5) 242
(3, 6) 295
(4, 1) 307
(4, 2) 246
(4, 3) 262
(4, 4) 273
(4, 5) 308
(4, 6) 302
(5, 1) 278
(5, 2) 301
(5, 3) 261
(5, 4) 254
(5, 5) 285
(5, 6) 278
(6, 1) 279
(6, 2) 269
(6, 3) 295
(6, 4) 301
(6, 5) 253
(6, 6) 283

(write code on next page)

6

def get_totals(rolld):
"""
rolld is a dictionary in which (a,b) tuples are
the keys, the corresponding value is the number of times
(a,b) was rolled in a dice simulation. Return dictionary
in which keys are unique values of a+b for (a,b) in
rolld and value is number of times sum a+b occurs for
each key
"""

7

PROBLEM 3 : (Follow the Money (18 points))

A list of political contributions in 2010 is stored in a Python list of tuples named contribs where each tuple
stores four values: a string, the politician’s name; a two-letter string, a US State abbreviation; an integer,
the total of all donations to the politician; and a single letter ’R’, ’D’, or ’I’ for Republican, Democrat, or
Independent, respectively.

For example, the second line below shows that Barbara Boxer from CA (California) received $20,314,189 in
donations and she is a Democrat.

contribs = [
("Jeff Greene","FL",23807119,"D")
("Barbara Boxer","CA",20314189,"D")
("Charles E Schumer","NY",17302006,"D")
("Harry Reid","NV",17213358,"D")
("Kirsten Elizabeth Gillibrand","NY",12900217,"D")
("Joseph A Sestak Jr","PA",11842844,"D")
("Linda Mcmahon","CT",46682270,"R")
("Sharron E Angle","NV",21470516,"R")
("John S Mccain","AZ",20077490,"R")
("Marco Rubio","FL",18251722,"R")
("Carly Fiorina","CA",17935605,"R")
("Scott P Brown","MA",17527893,"R")

]

As an example, to find the total of all contributions to all politicians we could use this Python expression:

total = sum([c[2] for c in contribs])

Part A (4 points)

Write a Python expression or code to store in variable rtotal the total of all donations for all politicians
who are Republicans.

Part B (4 points)

Write a Python expression or code that creates a list of strings: the names of all politicians who have received
more than $15 million in donations, store this list in variable heavies.

8

Part C (10 points)

For this part of the problem new data is provided in addition to the list contribs in the previous parts.

Each of the politician’s for whom data is found in the list contribs is the key in a dictionary donors whose
value is a list of tuples, the tuples giving the contributions for each donor to that politician. For example,
for Senator Rob Portman of Ohio part of his dictionary entry is shown below:

"Rob Portman" : [("L. Abbott", "4/22/10", 1900), ("V. Alpaugh", "12/29/09", 1000), ...
("C. Klein", "11/23/10", 500)]

The tuples in the list of donors have three values: the name of the donor, the date of the donation, and the
amount of money donated. In the data shown above, C. Klein gave $500.00 (to Rob Portman) on November
23, 2010 ("11/23/10").

Write the function small_donors that returns a list of two-tuples. The first element of each two-tuple is
the name of a politician that is in the list contribs (the first element of the tuples in list contribs, see
previous page) the second element in the two-tuple is an integer, the number of small donors, those who
gave less than $1000 to the candidate. For example, the list returned might look like this depending on the
data passed to small_donors:

[("Rob Portman", 52), ("Carly Fiorina", 107), ... ("Barbara Boxer", 972)]

The tuples in the list can be in any order. Every politician in contribs is a key in donors.

def small_donors(contribs, donors):
"""
contribs is a list described earlier containing 4-tuples,
in which first element is politician’s name

donors is a dictionary: key is politician’s name and value
is list of 3-tuples as above (name,date,money)

return list of 2-tuples (politician’s name, #small donors)
"""

9

PROBLEM 4 : (Top Songs (10 points))

Rolling Stone magazine published a list of the top 500 songs of all time in 2004 and updated the list in 2010.
A file stores the song, the artist, and the year the song was released as shown below.

Like a Rolling Stone:Bob Dylan:1965
(I Can’t Get No) Satisfaction:The Rolling Stones:1965
Imagine:John Lennon:1971
What’s Going On:Marvin Gaye:1971
...
Born to Run:Bruce Springsteen:1975
Help!:The Beatles:1965

Write the function artists that returns a dictionary in which the key is an artist (group, singer) and the
corresponding value is a list of the song titles from that artist. For example, both of these entries would
appear in the dictionary returned:

"The Beatles" : ["Hey Jude", "Yesterday", "I Want to Hold Your Hand", "Help!", ...]
"The Rolling Stones" : ["(I Can’t Get No) Satisfaction", "Sympathy for the Devil", ...]

The parameter filename is the name of a file as shown above. Return the dictionary described.

def artists(filename):
"""
return dictionary in proper format given parameter
filename which has song information in proper format
"""

f = open(filename)

f.close()

10

