CompSci 6 Introduction to Computer Science

December 8, 2011

Prof. Rodger

Announcements

- Final Exam
- APT due tonight!
- Last late assignments with penalty Dec 10!
 - Cannot turn in anything late after this date
- Grades on assignments are coming!
- Today
 - More sorting, timings
 - Classwork
 - A CS story

More Announcements

- Be a UTA
 - Will send email on this
- Next course
 - CompSci 100
 - Start all over again with Java
 - Java has if, loops, lists, maps (dictionaries), sets
 - Is that familiar?
 - Learn about nonlinear structures that can be more efficient

Final Exam

- Friday, Dec 16, 2-5pm
- Closed Book, Closed Notes, Closed neighbor
- Python Resource Sheet
- Covers all topics through today
- Best way to study is practice writing code!

Final Exam (cont)

- Test format
 - Multiple choice
 - Writing code
- Topics include:
 - if, loops, lists, sets, maps, files, functions
 - recursion and regular expressions reading level

Look at mergesort again

• Is there another way to do mergesort?

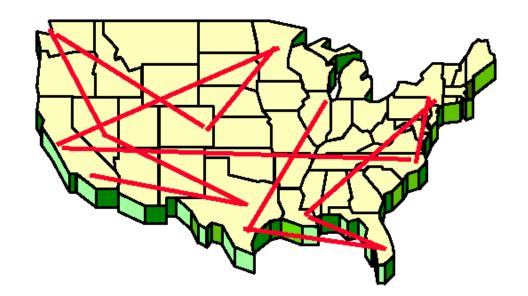
Growth of functions

• As the size of the data increases, how many steps are there for an algorithm/method?

Timings

N	log ₂ N	N^2	N^3	2 ^N
10	3.3	100	1000	1024
20	4.3	400	8000	1048576
40	5.3	1600	64000	1.1 x 10 ¹²
80	6.3	6400	512000	1.2 x 10 ²⁴
160	7.3	25600	4096000	1.4 x 10 ⁴⁸

Timings


N	log ₂ N	N^2	N^3	2 ^N
250	7.9	62,500	1.56×10^7	1.8 x 10 ⁷⁵
500	8.9	250,000	1.25×10^8	3.2×10^{150}
1000	9.9	$1x10^{6}$	1 x 10 ⁹	
2000	10.9	4 x 10 ⁶	4×10^6	
4000	11.9	1.6×10^7	8 x 10 ⁹	

Look at the timings of the sorts

- How do the sorts compare?
 - With size as they grow
 - With different types of data
 - Random
 - Reverse
 - Almost sorted

Problem: Traveling Band

- Band wants you to schedule their concerts.
- They don't like to travel. Minimize the time they are on the bus!
- Given N cities, what is the best schedule (shortest distance) to visit all N cities once?

How do you calculate the best path?

- Try all paths
 - Atlanta, Raleigh, Dallas, Reno, Chicago
 - Dallas, Atlanta, Raleigh, Reno, Chicago
 - Etc.
- Would you agree to code this up?

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	
15	10^{12}	
18	10^{15}	
20	10^{18}	
25	10^{25}	

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	< sec
15	10^{12}	
18	10^{15}	
20	10^{18}	
25	10^{25}	

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	< sec
15	10^{12}	16 min
18	10^{15}	
20	10^{18}	
25	10^{25}	

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	< sec
15	10^{12}	16 min
18	10^{15}	11 days
20	10^{18}	
25	10^{25}	

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	< sec
15	10^{12}	16 min
18	10^{15}	11 days
20	10^{18}	31 years
25	10^{25}	

Number of Cities	All paths – N!	Time to solve - 10^9 Instructions per second
10	3 million	< sec
15	10^{12}	16 min
18	10^{15}	11 days
20	10^{18}	31 years
25	10^{25}	10 ⁸ years

P = NP?

- P: Problems with polynomial time solutions
 - $-N, N^2$
 - Example: Selection sort
 - Easy to solve
- NP: problems with not polynomial time solutions
 - -2^{n} , N!
 - Hard to solve

Does P = NP?

- Famous CS question
- If yes, a whole class of difficult problems can be solve efficiently, one problem is reducible to another
- If no, none of the hard problems can be solved efficiently

A CS Story