
Compsci 104 1

Register File, Finite State Machines &
Hardware Control Language

Avin R. Lebeck

Some slides based on those developed by Gershon Kedem, and by
Randy Bryant and Dave O’Hallaron

Compsci 104 2

Administrivia

  Homework #4 is up, due Oct 20
  Midterm: Median 90
  May be late for office hours Thursday Morning
  May move Monday afternoon office hours
Read
  Sections 4.1-4.3 of text
  Pragmatic Logic (PDF on blackboard or through Library)

Today
  Review Logic Design

  Logisim demo (work through beginnergs guide)
  Memory: Latches, FlipFlops, Register file
  Finite State Machines: Sequential Circuits
  Hardware Control Language (if time)

Compsci 104 3

F = ~a*b + ~b*a

a

b F

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

Review: Boolean Functions, Gates and Circuits

  Circuits are made from a network of gates. (function
compositions).

  Logisim demo

XOR(a,b) a
b

Compsci 104 4

Review: The ALU

ALU Slice ALU Slice ALU Slice ALU Slice
ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

Compsci 104 5

Review: Abstraction: The ALU

  General structure
  Two operand inputs
  Control inputs

  We can build
circuits for
  Multiplication
  Division
  They are more

complex

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

Compsci 104 6

Review: Set-Reset Latch (Continued)

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Time

S 0
1

R
0
1

Q
0
1

Compsci 104 7

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
 affect Output

Compsci 104 8

  On C D is transferred to the first D latch and the second is stable.

  On C the output of the first stage is transferred to the second
 (output), and the first stage is stable.

  Key: Output changes only on the edge of a clock

  Logisim demos

D Flip-Flop

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

Compsci 104 9

Register File

  Register File = the set of locations for register values
  E.g., 32 32-bit registers

  How do I build a Register File using D Flip-Flops?
  What other components do I need?

Compsci 104 10

Register File

  Circuit to determine which of 32 registers?
  Circuit to get just the data from one of 32 registers?

Compsci 104 11

D E Q
0 1 0
1 1 1
- 0 Z

Z :- High Impedance

D Q

E

  The Tri-State driver is like a (one directional) switch:
  When the Enable is on (E=1) it transfers the input to the output.
  When the Enable is off (E=0) it disconnects the output.

D Q

E

Tri-State Driver

Compsci 104 12

  The Bus: Many to many connections.
  Mutual exclusion: At most one Enable is on!
  Control must ensure this!
 Note: Bus sometimes used to denote multiple
parallel wires

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

Bus Connections

Compsci 104 13

Register Cells on a bus

 One can “source” and “sink” from any cell on the bus

by activating the right controls,
IE--input enable, and OE--output enable.

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

Compsci 104 14

3-Port Register Cell

Q

Q

D ata-In

D in E nable OutA OutB

Bus-B

Bus-A

Bus-C

Complement Q

•  Stores one bit of a register
•  Can Read onto Bus-A & Bus-B and Write from Bus-C
 Simultaneously

Compsci 104 15

Q

Q

Bus-B

Bus-A

Bus-C

Q

Q

Bus-B

Bus-A

Bus-C

Bit-0

Bit-1

EA EB EC

3-Port Register File

Compsci 104 16

Address Decode Circuit

A0

A1
EA

B0
B1
EB
C0

C1
EC

Q

Q

Data-in

OutA OutB DEnabl
e

Bus-A

Bus-B
Bus-C

Register address: 01

Compsci 104 17

Reg-0 Reg-1 Reg-2 Reg-3

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

A3
B3
C3

A-En
Add-A1
Add-A0
B -En
Add-B 1
Add-B 0

C -En
Add-C 1
Add-C 0

A1
B1
C1

A2
B2
C2

A0
B0
C0

Register File (Four 4-bit Registers)

Compsci 104 18

Digital Logic Summary

  Given Boolean function, generate a circuit to “realize” the
function.

  Constructed circuits that can add and subtract.
  The ALU: a circuit that can add, subtract, detect overflow,

compare, and do bit-wise operations (AND, OR, NOT)
  Shifter
  Memory Elements: SR-Latch, D Latch, D Flip-Flop
  Tri-state drivers & Bus Communication vs. MUX
  Register Files
  Control Signals modify what circuit does with inputs

  ALU, Shift, Register Read/Write
  Next

  Finite State Machines
  Hardware Control Language

Compsci 104 19

Finite State Machine

  S ={ s0, s1, . . . sn-1} is a finite set of states.
  I = { i0, i1, . . . ik-, 1} is a finite set of input values.
  O= { o0, o1, . . . om-1} is a finite set output values.

Definition: A finite state machine is a function F:(S x

I)-> (S x O) that gets a sequence of input values Ik∈
I, k = 0,1,2 , • • • and it produces a sequence of
output values Ok∈O, k= 1,2, • • • such that:

 F(sk, ik) = (sk+1, ok+1) K=0, 1, 2, • • •

Compsci 104 20

Finite State Machine
(Translation to English)

  Finite State Machine is:
  A machine with a finite number of possible states.
  A machine with a finite number of possible Inputs.
  A machine with a finite number of possible different

outputs.

  At each period (Clock cycle) the machine receives an
input and it produces an output.

  The output is a function of the machine input and
current state.

  After each period the machine changes state.
  The new state is a function of the input and current

state.

Compsci 104 21

Example: Traffic Light Controller

C

C

C
C

N

S

W E

Traffic light controller
at an intersection.

Compsci 104 22

Finite State Machine (cont.)

  Example: Traffic lights controller:
  There are four states:

  NG: Green light in the north-south direction.
  NY: Yellow light in the north-south direction.
  EG: Green light at the East-West direction.
  EY: Yellow light at the East-West direction.

  There are four outputs:
  (G;R): North-South green light, East-West red light
  (Y;R): North-South yellow light, East West red light
  (R;Y): North-South red light, East-West yellow light
  (R;G): North-South red light, East-West green light

  There are four inputs:
  (c, c): Car at the North-South, Car at East-West
  (c, nc) Car at North-South, No-car at East-West
  (nc, c): No-car at North-South, Car at East-West
  (nc, nc): No-car at North-South, No-car at East-West

Compsci 104 23

FSM Example: Traffic Light

  State Transitions:

State Input Next-State Output
NG (-;NC) NG (G;R)
NG (-;C) NY (G;R)
NY - EG (Y;R)
EG (NC;-) EG (R;G)
EG (C;-) EY (R;G)
EY - NG (R;Y)

Format
(North/South; East/West)

 - means don’t care

Compsci 104 24

Finite State Machine (cont.)

  Finite State Machines can be represented by a graph.
  The graph is called a State Diagram.
  The states are the nodes in the graph.
  The arcs in the graph represent state transitions.
  Each arc is labeled with the Inputs that cause the transition
  Nodes are labeled with the outputs.

Compsci 104 25

FSM State Diagram
Example: Traffic light Controller

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

Compsci 104 26

State Coding

State Code
NG 00
NY 01
EG 10
EY 11

Input Code
(C;C) 11
(C;NC) 10
(NC;C) 01
(NC;NC) 00

Output Code
(R;G) 001100
(G;R) 100001
(Y;R) 010001
(R;Y) 001010

Enumerate States

One bit for each
 Input
Input is either
 true or false

One bit per color for each
 light
GYRGYR

(North; East)

Compsci 104 27

Coded State Diagram

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

00

01

10

11

(100;001)

(001;100)

(001;010)(010;001)

(--;1)

(--;0)

(0;--)

(1;--)

Compsci 104 28

Example: Traffic Light Controller

IN S NS OUT
01 01 01 012345
0- 00 00 100001
1- 00 01 100001
-- 01 10 010001
-0 10 10 001100
-1 10 11 001100
-- 11 00 001010

NS1 = S0’*S1’*I0+S0*S1’*I1
 = S1’*(S0’I0+S0*I1)
NS0 = S0’*S1+S0*S1’*I1’+S0*S1’*I1
 = S0’*S1+S0*S1’
OUT0 = S0’*S1’
OUT1 = S0’*S1
OUT2 = S0*S1’+S0*S1= S0
OUT3 = S0*S1’
OUT4 = S0*S1
OUT5 = S0’*S1’+S0’*S1= S0’

S = State, bits are S0 and S1
NS = Next State, bits are NS0 and NS1

Compsci 104 29

Traffic Controller FSM implementation

Compsci 104 30

General Method for FSM design

  Determine the problem:
1.  Draw the state diagram,
2.  Write the truth table,
3.  Write sum-of-products equations

Compsci 104 31

A Simple Arrow FSM

  Consider those flashing arrow signs
  No light, one light, two lights, three lights

  > >> >>>
  Let’s design the FSM to control this sign

Compsci 104 32

Pattern Recognizer

  A pattern recognizer examines a sequence of inputs to
detect when it sees the pattern 101. When it sees this
pattern its output is 1 forever.

  Let’s design the FSM

Compsci 104 33

Bit Equality

  Generate 1 if a and b are equal
  Hardware Control Language (HCL)

  Very simple hardware description language
  Boolean operations have syntax similar to C logical operations

  We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

Compsci 104 34

Word Equality

  32-bit word size
  HCL representation

  Equality operation
  Generates Boolean value

b31
Bit equal

a31

eq31

b30
Bit equal

a30

eq30

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

Compsci 104 35

Bit-Level Multiplexor

  Control signal s
  Data signals a and b
  Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

Compsci 104 36

Word Multiplexor

  Select input word A or B
depending on control signal s

  HCL representation
  Case expression
  Series of test : value pairs
  Output value for first

successful test

Word-Level Representation

HCL Representation

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

int Out = [
 s : A;
 1 : B;
];

s

B

A
Out MUX

Compsci 104 37

HCL Word-Level Examples

  Find minimum of three
input words

  HCL case expression
  Final case guarantees

match
A

Min3 MIN3 B
C

int Min3 = [
 A < B && A < C : A;
 B < A && B < C : B;
 1 : C;
];

D0

D3

Out4

s0
s1

MUX4
D2
D1

n  Select one of 4
inputs based on two
control bits

n  HCL case expression
n  Simplify tests by

assuming sequential
matching

int Out4 = [
 !s1&&!s0: D0;
 !s1 : D1;
 !s0 : D2;
 1 : D3;
];

Minimum of 3 Words

4-Way Multiplexor

Compsci 104 38

Random-Access Memory

  Stores multiple words of memory
  Address input specifies which word to read or write

  Register file
  Holds values of program registers
  %eax, %esp, etc.
  Register identifier serves as address

–  ID 8 implies no read or write performed
  Multiple Ports

  Can read and/or write multiple words in one cycle
–  Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

Compsci 104 39

Register File Timing

  Reading
  Like combinational logic
  Output data generated based on

input address
  After some delay

  Writing
  Like register
  Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

W dstW

valW

Clock

x 2
Rising
clock _ _ Register

file
W dstW

valW

Clock

y 2

x 2

x

2

Compsci 104 40

Summary

Finite State Machines
  Inputs, Current State
  Compute Outputs and Next State

HCL
  Language to express boolean logic
  Also, word level functions

  Homework #4

