
Compsci 104 1

Register File, Finite State Machines &
Hardware Control Language

Avin R. Lebeck

Some slides based on those developed by Gershon Kedem, and by
Randy Bryant and Dave O’Hallaron

Compsci 104 2

Administrivia

  Homework #4 is up, due Oct 20
  Midterm: Median 90
  May be late for office hours Thursday Morning
  May move Monday afternoon office hours
Read
  Sections 4.1-4.3 of text
  Pragmatic Logic (PDF on blackboard or through Library)

Today
  Review Logic Design

  Logisim demo (work through beginnergs guide)
  Memory: Latches, FlipFlops, Register file
  Finite State Machines: Sequential Circuits
  Hardware Control Language (if time)

Compsci 104 3

F = ~a*b + ~b*a

a

b F

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

Review: Boolean Functions, Gates and Circuits

  Circuits are made from a network of gates. (function
compositions).

  Logisim demo

XOR(a,b) a
b

Compsci 104 4

Review: The ALU

ALU Slice ALU Slice ALU Slice ALU Slice
ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

Compsci 104 5

Review: Abstraction: The ALU

  General structure
  Two operand inputs
  Control inputs

  We can build
circuits for
  Multiplication
  Division
  They are more

complex

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

Compsci 104 6

Review: Set-Reset Latch (Continued)

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Time

S 0
1

R
0
1

Q
0
1

Compsci 104 7

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
 affect Output

Compsci 104 8

  On C D is transferred to the first D latch and the second is stable.

  On C the output of the first stage is transferred to the second
 (output), and the first stage is stable.

  Key: Output changes only on the edge of a clock

  Logisim demos

D Flip-Flop

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

Compsci 104 9

Register File

  Register File = the set of locations for register values
  E.g., 32 32-bit registers

  How do I build a Register File using D Flip-Flops?
  What other components do I need?

Compsci 104 10

Register File

  Circuit to determine which of 32 registers?
  Circuit to get just the data from one of 32 registers?

Compsci 104 11

D E Q
0 1 0
1 1 1
- 0 Z

Z :- High Impedance

D Q

E

  The Tri-State driver is like a (one directional) switch:
  When the Enable is on (E=1) it transfers the input to the output.
  When the Enable is off (E=0) it disconnects the output.

D Q

E

Tri-State Driver

Compsci 104 12

  The Bus: Many to many connections.
  Mutual exclusion: At most one Enable is on!
  Control must ensure this!
 Note: Bus sometimes used to denote multiple
parallel wires

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

Bus Connections

Compsci 104 13

Register Cells on a bus

 One can “source” and “sink” from any cell on the bus

by activating the right controls,
IE--input enable, and OE--output enable.

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

D

E

Q

Q

D
latch

IE OE

Compsci 104 14

3-Port Register Cell

Q

Q

D ata-In

D in E nable OutA OutB

Bus-B

Bus-A

Bus-C

Complement Q

•  Stores one bit of a register
•  Can Read onto Bus-A & Bus-B and Write from Bus-C
 Simultaneously

Compsci 104 15

Q

Q

Bus-B

Bus-A

Bus-C

Q

Q

Bus-B

Bus-A

Bus-C

Bit-0

Bit-1

EA EB EC

3-Port Register File

Compsci 104 16

Address Decode Circuit

A0

A1
EA

B0
B1
EB
C0

C1
EC

Q

Q

Data-in

OutA OutB DEnabl
e

Bus-A

Bus-B
Bus-C

Register address: 01

Compsci 104 17

Reg-0 Reg-1 Reg-2 Reg-3

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

A3
B3
C3

A-En
Add-A1
Add-A0
B -En
Add-B 1
Add-B 0

C -En
Add-C 1
Add-C 0

A1
B1
C1

A2
B2
C2

A0
B0
C0

Register File (Four 4-bit Registers)

Compsci 104 18

Digital Logic Summary

  Given Boolean function, generate a circuit to “realize” the
function.

  Constructed circuits that can add and subtract.
  The ALU: a circuit that can add, subtract, detect overflow,

compare, and do bit-wise operations (AND, OR, NOT)
  Shifter
  Memory Elements: SR-Latch, D Latch, D Flip-Flop
  Tri-state drivers & Bus Communication vs. MUX
  Register Files
  Control Signals modify what circuit does with inputs

  ALU, Shift, Register Read/Write
  Next

  Finite State Machines
  Hardware Control Language

Compsci 104 19

Finite State Machine

  S ={ s0, s1, . . . sn-1} is a finite set of states.
  I = { i0, i1, . . . ik-, 1} is a finite set of input values.
  O= { o0, o1, . . . om-1} is a finite set output values.

Definition: A finite state machine is a function F:(S x

I)-> (S x O) that gets a sequence of input values Ik∈
I, k = 0,1,2 , • • • and it produces a sequence of
output values Ok∈O, k= 1,2, • • • such that:

 F(sk, ik) = (sk+1, ok+1) K=0, 1, 2, • • •

Compsci 104 20

Finite State Machine
(Translation to English)

  Finite State Machine is:
  A machine with a finite number of possible states.
  A machine with a finite number of possible Inputs.
  A machine with a finite number of possible different

outputs.

  At each period (Clock cycle) the machine receives an
input and it produces an output.

  The output is a function of the machine input and
current state.

  After each period the machine changes state.
  The new state is a function of the input and current

state.

Compsci 104 21

Example: Traffic Light Controller

C

C

C
C

N

S

W E

Traffic light controller
at an intersection.

Compsci 104 22

Finite State Machine (cont.)

  Example: Traffic lights controller:
  There are four states:

  NG: Green light in the north-south direction.
  NY: Yellow light in the north-south direction.
  EG: Green light at the East-West direction.
  EY: Yellow light at the East-West direction.

  There are four outputs:
  (G;R): North-South green light, East-West red light
  (Y;R): North-South yellow light, East West red light
  (R;Y): North-South red light, East-West yellow light
  (R;G): North-South red light, East-West green light

  There are four inputs:
  (c, c): Car at the North-South, Car at East-West
  (c, nc) Car at North-South, No-car at East-West
  (nc, c): No-car at North-South, Car at East-West
  (nc, nc): No-car at North-South, No-car at East-West

Compsci 104 23

FSM Example: Traffic Light

  State Transitions:

State Input Next-State Output
NG (-;NC) NG (G;R)
NG (-;C) NY (G;R)
NY - EG (Y;R)
EG (NC;-) EG (R;G)
EG (C;-) EY (R;G)
EY - NG (R;Y)

Format
(North/South; East/West)

 - means don’t care

Compsci 104 24

Finite State Machine (cont.)

  Finite State Machines can be represented by a graph.
  The graph is called a State Diagram.
  The states are the nodes in the graph.
  The arcs in the graph represent state transitions.
  Each arc is labeled with the Inputs that cause the transition
  Nodes are labeled with the outputs.

Compsci 104 25

FSM State Diagram
Example: Traffic light Controller

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

Compsci 104 26

State Coding

State Code
NG 00
NY 01
EG 10
EY 11

Input Code
(C;C) 11
(C;NC) 10
(NC;C) 01
(NC;NC) 00

Output Code
(R;G) 001100
(G;R) 100001
(Y;R) 010001
(R;Y) 001010

Enumerate States

One bit for each
 Input
Input is either
 true or false

One bit per color for each
 light
GYRGYR

(North; East)

Compsci 104 27

Coded State Diagram

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

00

01

10

11

(100;001)

(001;100)

(001;010)(010;001)

(--;1)

(--;0)

(0;--)

(1;--)

Compsci 104 28

Example: Traffic Light Controller

IN S NS OUT
01 01 01 012345
0- 00 00 100001
1- 00 01 100001
-- 01 10 010001
-0 10 10 001100
-1 10 11 001100
-- 11 00 001010

NS1 = S0’*S1’*I0+S0*S1’*I1
 = S1’*(S0’I0+S0*I1)
NS0 = S0’*S1+S0*S1’*I1’+S0*S1’*I1
 = S0’*S1+S0*S1’
OUT0 = S0’*S1’
OUT1 = S0’*S1
OUT2 = S0*S1’+S0*S1= S0
OUT3 = S0*S1’
OUT4 = S0*S1
OUT5 = S0’*S1’+S0’*S1= S0’

S = State, bits are S0 and S1
NS = Next State, bits are NS0 and NS1

Compsci 104 29

Traffic Controller FSM implementation

Compsci 104 30

General Method for FSM design

  Determine the problem:
1.  Draw the state diagram,
2.  Write the truth table,
3.  Write sum-of-products equations

Compsci 104 31

A Simple Arrow FSM

  Consider those flashing arrow signs
  No light, one light, two lights, three lights

  > >> >>>
  Let’s design the FSM to control this sign

Compsci 104 32

Pattern Recognizer

  A pattern recognizer examines a sequence of inputs to
detect when it sees the pattern 101. When it sees this
pattern its output is 1 forever.

  Let’s design the FSM

Compsci 104 33

Bit Equality

  Generate 1 if a and b are equal
  Hardware Control Language (HCL)

  Very simple hardware description language
  Boolean operations have syntax similar to C logical operations

  We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

Compsci 104 34

Word Equality

  32-bit word size
  HCL representation

  Equality operation
  Generates Boolean value

b31
Bit equal

a31

eq31

b30
Bit equal

a30

eq30

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

Compsci 104 35

Bit-Level Multiplexor

  Control signal s
  Data signals a and b
  Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

Compsci 104 36

Word Multiplexor

  Select input word A or B
depending on control signal s

  HCL representation
  Case expression
  Series of test : value pairs
  Output value for first

successful test

Word-Level Representation

HCL Representation

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

int Out = [
 s : A;
 1 : B;
];

s

B

A
Out MUX

Compsci 104 37

HCL Word-Level Examples

  Find minimum of three
input words

  HCL case expression
  Final case guarantees

match
A

Min3 MIN3 B
C

int Min3 = [
 A < B && A < C : A;
 B < A && B < C : B;
 1 : C;
];

D0

D3

Out4

s0
s1

MUX4
D2
D1

n  Select one of 4
inputs based on two
control bits

n  HCL case expression
n  Simplify tests by

assuming sequential
matching

int Out4 = [
 !s1&&!s0: D0;
 !s1 : D1;
 !s0 : D2;
 1 : D3;
];

Minimum of 3 Words

4-Way Multiplexor

Compsci 104 38

Random-Access Memory

  Stores multiple words of memory
  Address input specifies which word to read or write

  Register file
  Holds values of program registers
  %eax, %esp, etc.
  Register identifier serves as address

–  ID 8 implies no read or write performed
  Multiple Ports

  Can read and/or write multiple words in one cycle
–  Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

Compsci 104 39

Register File Timing

  Reading
  Like combinational logic
  Output data generated based on

input address
  After some delay

  Writing
  Like register
  Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

W dstW

valW

Clock

x 2
Rising
clock _ _ Register

file
W dstW

valW

Clock

y 2

x 2

x

2

Compsci 104 40

Summary

Finite State Machines
  Inputs, Current State
  Compute Outputs and Next State

HCL
  Language to express boolean logic
  Also, word level functions

  Homework #4

