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Introduction

A* (pronounced ‘A-star’) is a search algorithm that finds the
shortest path between some nodes S and T in a graph.



Heuristic Functions

I Suppose we want to get to node T , and we are currently at
node v . Informally, a heuristic function h(v) is a function that
‘estimates’ how v is away from T .

I Example: Suppose I am driving from Durham to Raleigh. A
heuristic function would tell me approximately how much
longer I have to drive.
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Admissible Heuristics

I A heuristic function is admissible if it never overestimates the
distance to the goal.

I Example: h(v) = 0 is an admissible heuristic.

I Less trivial example: If our nodes are points on the plane,
then the straight-line distance
h(v) =

√
(vx − Tx)2 + (vy − Ty )2 is an admissible heuristic.
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Consistent Heuristics

I Suppose two nodes u and v are connected by an edge. A
heuristic function h is consistent or monotone if it satisfies
the following:

h(u) ≤ e(u, v) + h(v)

where e(u, v) is the edge distance from u to v .

I Reasoning: If I want to reach T from u, then I can first go
through v , then go to T from there. (This is very similar to
the triangle inequality.)
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I Less trivial example, again: If our nodes are points on the
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I All consistent heuristics are admissible. (Proof left to the
reader.)
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Description of A*

We are now ready to define the A* algorithm. Suppose we are
given the following inputs:

I A graph G = (V ,E ), with nonnegative edge distances e(u, v)

I A start node S and an end node T

I An admissible heuristic h

Let d(v) store the best path distance from S to v that we have
seen so far. Then we can think of d(v) + h(v) as the estimate of
the distance from S to v , then from v to T . Let Q be a queue of
nodes, sorted by d(v) + h(v).



Pseudocode for A*

d(v)←

{
∞ if v 6= S

0 if v = S

Q := the set of nodes in V , sorted by d(v) + h(v)
while Q not empty do

v ← Q.pop()
for all neighbours u of v do

if d(v) + e(v , u) ≤ d(u) then
d(u)← d(v) + e(v , u)

end if
end for

end while



Comparison to Dijkstra’s Algorithm

Observation: A* is very similar to Dijkstra’s algorithm:

d(v)←

{
∞ if v 6= S

0 if v = S

Q := the set of nodes in V , sorted by d(v)
while Q not empty do
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for all neighbours u of v do
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end while

In fact, Dijkstra’s algorithm is a special case of A*, when we set
h(v) = 0 for all v .
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Performance

How good is A*?

I If we use an admissible heuristic, then A* returns the optimal
path distance. Furthermore, any other algorithm using the
same heuristic will expand at least as many nodes as A*.

I In practice, if we have a consistent heuristic, then A* can be
much faster than Dijkstra’s algorithm.

I Example: Consider cities (points on the plane), with roads
(edges) connecting them. Then the straight-line distance is a
consistent heuristic.

(Proofs may be found in most introductory textbooks on artificial
intelligence.)
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