
Lecture notes 1: Introduction to linear and (mixed) integer

programs

Vincent Conitzer

1 An example

We will start with a simple example. Suppose we are in the business of selling reproductions of
two different paintings. We can sell any number of reproductions of painting 1 for $3 each, and any
number of reproductions of painting 2 for $2 each. (This is reasonable if we are a relatively small
firm that does not have a significant effect on market prices.) Unfortunately, we have only a limited
amount of paint: we have 16 units of blue paint, 8 units of green paint, and 5 units of red paint. A
reproduction of painting 1 requires 4 units of blue, 1 unit of green, and 1 unit of red. A reproduction
of painting 2 requires 2 units of blue, 2 units of green, and 1 unit of red. How many reproductions
of each painting should we create to maximize our revenue?

Let x1 denote the number of reproductions of painting 1 that we create, and x2 the number of
reproductions of painting 2. Of course, we must have x1 ≥ 0 and x2 ≥ 0. Additionally, there is a
constraint for each color of paint. For example, due to our limited amount of blue paint, we must
have 4x1 + 2x2 ≤ 16. Similarly, we must have x1 + 2x2 ≤ 8 and x1 + x2 ≤ 5, due to our limited
amounts of green and red paint, respectively. Our total revenue will be 3x1 + 2x2, which we want
to maximize. We can summarize all of this as follows:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 16
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0; x2 ≥ 0

This is a linear program, consisting of an objective that we seek to maximize, and constraints that
we must satisfy. (It is linear because the objective and the constraints are linear in the variables; for
example, if there had been a term x1x2 or x2

1, it would not have been a linear program.) Because this
particular linear program has only two variables, we can solve it graphically by inspection (Figure 1).

1

2

0

4

6

8

2 4 6 8

optimal
solution:

x1=3, x2=2
obj = 13

obj = 6

obj = 12

4x1 + 2x2 = 16

x1 + x2 = 5

x1 + 2x2 = 8

x2

x1

Figure 1: Graphical representation of the painting problem instance.

Each constraint is represented by a line segment; any point on or below that line segment satisfies
the constraint. In order for a point to be feasible, that is, satisfy all the constraints, it must be below
all of the line segments representing constraints (and x1 and x2 must be nonnegative). The dotted
line segments represent the objective function: each dotted line segment constitutes a set of points
that all have the same objective value. As we move in the northeast direction (more precisely,
perpendicularly to the dotted lines), the objective value increases. It is now easy to see that the
feasible point that maximizes the objective value (that is, the optimal point) is the point where the
lines 4x1 + 2x2 = 16 and x1 + x2 = 5 (corresponding to the blue and red constraints, respectively)
intersect; this point is x1 = 3, x2 = 2, and it achieves the optimal revenue of 13. (The point where
4x1 + 2x2 = 16 and x1 + 2x2 = 8 intersect is not feasible, because that point lies above the line
x1 + x2 = 5.)

Now suppose we modify the problem slightly, by reducing the available blue paint from 16 to 15
units. This results in the following linear program:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0; x2 ≥ 0

This corresponds to the picture in Figure 2.

2

2

0

4

6

8

2 4 6 8
x1 + x2 = 5

x1 + 2x2 = 8

4x1 + 2x2 = 15

optimal
solution:

x1=2.5, x2=2.5
obj = 12.5

obj = 6

obj = 12

x2

x1

Figure 2: Graphical representation of the modified painting problem instance.

The optimal point is still at the intersection of the line segments corresponding to the blue and
red constraints; it is the point x1 = 2.5, x2 = 2.5 (with an objective value of 12.5). Now, in the
context of our painting example, this is not a very reasonable solution: how are we going to sell half
a painting? Realistically, we need additional integrality constraints: x1 and x2 should both be inte-
gers. This type of constraint is fundamentally different from the inequality constraints that we have
considered so far. Adding the integrality constraints results in the following integer (linear) program:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0, integer; x2 ≥ 0, integer

Figure 3 illustrates this integer program.

3

2

0

4

6

8

2 4 6 8
x1 + x2 = 5

x1 + 2x2 = 8

4x1 + 2x2 = 15

optimal LP
solution:

x1=2.5, x2=2.5
obj = 12.5

optimal IP
solution:

x1=2, x2=3
obj = 12

x2

x1

Figure 3: Graphical representation of the modified painting problem instance with integrality con-
straints.

The dots are the feasible points, that is, the combinations of values that meet all of the constraints
(including the integrality constraints). By inspection, the optimal feasible point is now x1 = 2, x2 =
3, with an objective value of 12. Hence, the integrality constraints come at a cost, because without
them, we could have achieved an objective value of 12.5. In contrast, in the original linear program
(with 16 units of blue paint), if we had added integrality constraints, this would not have come
at any cost, because the optimal solution to that linear program (without integrality constraints)
already had integer values.

In general, there may be an integrality constraint on some variables, but not on others. For
example, it may be the case that x1 does not need to take an integer value, but x2 does. Perhaps
painting 1 is an abstract painting of which we can easily sell just a part, whereas painting 2 depicts
a scene of which we cannot sell just a part. (I am sure that such a statement betrays a significant
lack of artistic sensibility on my part, for which I apologize.) This results in the following mixed
integer (linear) program:

maximize 3x1 + 2x2

subject to
4x1 + 2x2 ≤ 15
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0; x2 ≥ 0, integer

The feasible points are now given by horizontal line segments, as illustrated in Figure 4.

4

2

0

4

6

8

2 4 6 8
x1 + x2 = 5

x1 + 2x2 = 8

4x1 + 2x2 = 15

optimal LP
solution:

x1=2.5, x2=2.5
obj = 12.5

optimal IP
solution:

x1=2, x2=3
obj = 12 optimal MIP

solution:
x1=2.75, x2=2
obj = 12.25

x2

x1

Figure 4: Graphical representation of the modified painting problem instance with one integrality
constraint.

By inspection, the optimal feasible point is now the point on the blue line (4x1 + 2x2 = 15) for
which x2 = 2, that is, the point x1 = 2.75, x2 = 2.

This graphical method of solving linear programs obviously does not scale to problem instances
with larger numbers of variables (due to my inability to draw, for me, it does not even scale to three
variables). Fortunately, we will see some algorithms for this type of problem soon.

2 Abstract linear/integer programs

When we changed the amount of available blue paint from 16 to 15, we did not really change the
form of the program. It is often useful to write a linear program in an abstract form, replacing
the numbers in the problem by parameters. For example, we can let cj denote the selling price of
a reproduction of the jth painting, bi the available amount of paint color i, and aij the amount
of paint i required for a reproduction of painting j. In general, we can have n different paintings,
and m different paint colors. This results in the following abstract program for the painting problem:

maximize c1x1 + . . . + cnxn

subject to
a11x1 + . . . + a1nxn ≤ b1
...
am1x1 + . . . + amnxn ≤ bm

x1 ≥ 0 (, integer); . . .; xn ≥ 0 (, integer)

5

It is common to use m for the number of constraints (other than the nonnegativity and integrality
constraints), with i indicating a particular constraint; and n for the number of variables, with j
indicating a particular variable. Warning: when writing a program in abstract form like this, it
is extremely important not to confuse parameters with variables. We should remember that, when
we are solving a specific instance of the painting problem, we will be given exact numbers for the
cj , bi, and aij (the parameters), but we will be asked to solve for the optimal xj (the variables of
the program). In fact, if, say, the aij were also variables of the program (as well as the xj), then it
would no longer be linear.

The example about reproducing paintings above illustrates many of the key phenomena in (inte-
ger) linear programs. Nevertheless, in general linear programs, we can do a few more things. First
of all, parameters may be negative. If all parameters are nonnegative (as in the painting example
above), then it is trivial to find a feasible solution: setting all the variables to 0 will always work.
If we allow negative parameters, however, then finding a feasible solution is not trivial; in fact, no
feasible solution may exist.

However, we will now show that if the parameters are allowed to be negative, then the linear
program

maximize c1x1 + . . . + cnxn

subject to
a11x1 + . . . + a1nxn ≤ b1
...
am1x1 + . . . + amnxn ≤ bm

x1 ≥ 0; . . .; xn ≥ 0

is in fact fully general. (For simplicity, we will just consider linear programs, so that we do not
consider any integrality constraints.)

First of all, instead of maximizing an objective, we often wish to minimize an objective—for
example, we may wish to minimize some sort of cost. However, if our goal is to minimize c1x1 +
. . . + cnxn, this is equivalent to maximizing −c1x1− . . .− cnxn. Similarly, if we have a constraint of
the form ai1x1 + . . . + ainxn ≥ bi, then we can equivalently write −ai1x1 − . . .− ainxn ≤ −bi.

We may also have an equality constraint ai1x1 + . . . + ainxn = bi. We can replace this equality
by two inequalities, ai1x1 + . . . + ainxn ≤ bi and ai1x1 + . . . + ainxn ≥ bi (and the latter can be
converted to less-than-or-equal form as before).

Another possibility is that we have a variable xj that can take negative values—that is, there
is no nonnegativity constraint. If so, we can introduce two new variables, x′

j ≥ 0 and x′′
j ≥ 0, and

replace xj with x′
j − x′′

j everywhere, which can take any value.
Finally, we may have both variables and constants on both sides of the inequality, that is,

inequalities of the form ai1x1 + . . . + ainxn + bi ≥ a′
i1x1 + . . . + a′

inxn + b′
i. We can replace this

simply by (ai1 − a′
i1)x1 + . . . + (ain − a′

in)xn ≥ (b′
i − bi).

As a result, we can write any linear program in the above standard form. Sometimes, it is
useful to write linear programs in other forms. We can turn any inequality constraint into an
equality constraint by introducing a so-called slack variable. That is, we can replace the constraint
ai1x1 + . . . + ainxn ≤ bi by the constraint ai1x1 + . . . + ainxn + wi = bi (where wi ≥ 0). The slack
variable wi indicates “by how much” the original constraint i is satisfied.

Throughout, we will sometimes write programs in nonstandard form, with the understanding
that the program can easily be converted back to standard form if we so desire.

6

3 Additional terminology

Any assignment of values to the variables is called a solution. A solution is feasible if it respects
all the constraints, and optimal if it maximizes the objective among feasible solutions. A program
may have no feasible solutions at all, for example, if the constraints x1 ≤ 1 and −x1 ≤ −2 are both
present. A program with no feasible solutions is called infeasible. It may also be the case that for
any real value r, there exists a feasible solution with objective value at least r. For example, it may
be the case that c1 = 1 and ai1 = 0 for all i, and there exists a feasible solution. In that case, we can
start with the feasible solution and then make x1 as large as we like, thereby making the objective
as large as we like. If this is the case, then we say that the program is unbounded.

4 A quick preview

In what follows, we will study a number of example problems that can be modeled as linear or
integer programs. We will then study other properties of linear and integer programs, as well as
algorithms for solving them.

As we will see, linear programs are, in various senses, significantly easier to solve than (mixed)
integer programs. For example, given any linear program together with an optimal solution to that
problem, there is always a succinct proof (or certificate) of that solution’s optimality. Whether
such simple proofs exist for (mixed) integer programs is not known (but if they do, it would imply
P=coNP). In fact, linear programs can be solved in polynomial time (although the most common
algorithm for solving linear programs, the simplex algorithm, is in fact not a polynomial-time al-
gorithm), whereas solving (mixed) integer programs is NP-hard. Because of this, algorithms for
solving integer programs typically build on algorithms for solving linear programs, often calling the
latter as subroutines.

7

