
Lecture notes 6: The simplex algorithm

Vincent Conitzer

1 Introduction

We will now discuss the best-known algorithm (really, a family of algorithms) for solving a linear
program, the simplex algorithm. We will demonstrate it on an example. Consider again the linear
program for our (unmodified) painting example:

maximize 3x1 + 2x2
subject to
4x1 + 2x2 ≤ 16
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0;x2 ≥ 0

To run the simplex algorithm, we introduce a slack variable wi for each constraint i, so that we
can rewrite the linear program in equality form, as follows:

maximize 3x1 + 2x2
subject to
w1 = 16 − 4x1 − 2x2
w2 = 8 − x1 − 2x2
w3 = 5 − x1 − x2
w1, w2, w3, x1, x2 ≥ 0

If we set x1 = x2 = 0, we get a feasible solution to this linear program. (Of course, this is not
the case for every linear program, and we will see what to do if this is not the case later on.) Our
goal is to improve this solution. If we increase either x1 or x2, then the objective value will increase.
Let us start by increasing x1. At some point, one of the constraints will be violated—that is, one of
the slack variables will become negative. Specifically, if we increase x1 to 4, then the first constraint
4x1 + 2x2 ≤ 16 will be just barely satisfied, that is, w1 will be 0, so we cannot increase x1 further.
(The other constraints are still satisfied at this point.) The objective value at this current solution
of x1 = 4, x2 = 0 is 12, a good start but we are not yet at optimality.

The key trick of the simplex algorithm is that at this point, we rewrite the linear program, chang-
ing the roles of some of the original and slack variables. After we do so, the current solution will
once again correspond to the origin. Specifically, we remove x1, whose value is no longer 0, from the
objective and the right-hand sides of the equalities; we replace it with an expression involving w1,
whose value is now 0. Specifically, from the first constraint, we know that w1 = 16 − 4x1 − 2x2, or
equivalently, x1 = 4−0.25w1−0.5x2. We replace the first constraint with this new equality. We also
rewrite the objective as 3x1 + 2x2 = 3(4− 0.25w1 − 0.5x2) + 2x2 = 12− 0.75w1 + 0.5x2. We rewrite
the second constraint as w2 = 8 − x1 − 2x2 = 8 − (4 − 0.25w1 − 0.5x2) − 2x2 = 4 + 0.25w1 − 1.5x2,
and the third constraint as w3 = 5 − x1 − x2 = 5 − (4 − 0.25w1 − 0.5x2) − x2 = 1 + 0.25w1 − 0.5x2.
This results in the following linear program, which is equivalent to our original linear program:

1



maximize 12 − 0.75w1 + 0.5x2
subject to
x1 = 4 − 0.25w1 − 0.5x2
w2 = 4 + 0.25w1 − 1.5x2
w3 = 1 + 0.25w1 − 0.5x2
w1, w2, w3, x1, x2 ≥ 0

Our current solution consists of setting w1 = 0, x2 = 0. Because both of these are 0, the other
values are easy to read off: the current objective value is 12, x1 is 4, w2 is 4, and w3 is 1. We call
a linear program written in this way a dictionary; the left-hand side variables are called the basic
variables, and the right-hand side variables (which are set to 0 in the current solution) the nonbasic
variables. When we moved from the first dictionary to the second dictionary, we performed a pivot;
in this pivot x1 was the entering variable (going from nonbasic to basic) and w1 was the leaving
variable (going from basic to nonbasic).

It is easy to see that we have not yet arrived at an optimal solution: the coefficient of x2 in
the objective is positive, meaning that by increasing x2 we can increase the objective value. In
contrast, there is no sense in increasing w1 because its coefficient in the objective is negative. So,
we will increase x2 as much as we can without violating a constraint. If we increase x2 to 2, then
w3 will be equal to 0 (and the other two basic variables will still be positive.) So, x2 is our entering
variable, and w3 is our leaving variable. We know that w3 = 1 + 0.25w1 − 0.5x2, or equivalently,
x2 = 2 + 0.5w1 − 2w3, so we replace the last constraint with this expression. We also use this
expression to replace occurrences of x2 in the objective and the right-hand sides of the constraints.
We obtain:

maximize 13 − 0.5w1 − w3

subject to
x1 = 3 − 0.5w1 + w3

w2 = 1 − 0.5w1 + 3w3

x2 = 2 + 0.5w1 − 2w3

w1, w2, w3, x1, x2 ≥ 0

Again, our current solution corresponds to setting the nonbasic variables w1 and w3 to 0. We can
easily read off that the current value of our solution is 13, and that x1 = 3, x2 = 2. It is interesting
to note that in this pivot, by increasing x2, we automatically decreased x1 from 4 to 3. The next
step would be to increase either w1 or w3 to increase the objective. However, the coefficient on both
of these variables in the objective is negative, so there is no point to doing this: it will only decrease
the objective. So the simplex algorithm terminates. In fact, this last dictionary gives a proof that
our current solution is optimal: because w1 and w3 must be nonnegative, clearly the objective value
can be at most 13, and our current solution achieves this.

2 A richer example

To illustrate some additional phenomena involving the simplex algorithm, we now consider the fol-
lowing richer example, corresponding to the combinatorial auction example with partially acceptable
bids from before.

2



maximize 4x1 + 5x2 + 4x3 + 7x4 + x5
subject to
x1 + x3 + x4 ≤ 1
x1 + x2 + x4 ≤ 1
x2 + x3 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ≥ 0

We omitted the constraints that for each j, xj ≤ 1, but it is easy to see that this is implied by
the other constraints. We now write this linear program in equality form:

maximize 4x1 + 5x2 + 4x3 + 7x4 + x5
subject to
w1 = 1 − x1 − x3 − x4
w2 = 1 − x1 − x2 − x4
w3 = 1 − x2 − x3
w4 = 1 − x4 − x5
w1, w2, w3, w4, x1, x2, x3, x4, x5 ≥ 0

Again, this is a feasible dictionary, in the sense that setting all of the nonbasic variables to 0
corresponds to a feasible solution. Now we need to choose an entering variable. All of the xj have a
positive coefficient in the objective, so we can choose any one of them. One natural heuristic is to
choose the one with the greatest coefficient, because we want to improve the objective by as much
as possible. So we choose x4 as the entering variable. Once we increase x4 to 1, w1, w2, and w4

all simultaneously become 0. That means that in this case, we can choose any one of them as the
leaving variable. Let us choose w1 as the leaving variable. The resulting pivot produces the following
new dictionary:

maximize 7 − 7w1 − 3x1 + 5x2 − 3x3 + x5
subject to
x4 = 1 − w1 − x1 − x3
w2 = w1 − x2 + x3
w3 = 1 − x2 − x3
w4 = w1 + x1 + x3 − x5
w1, w2, w3, w4, x1, x2, x3, x4, x5 ≥ 0

We now have a choice between x2 and x5 as the next entering variable; because x2 has a larger
coefficient in the objective, let us choose x2. Now, something strange happens: we cannot increase
x2 at all without violating one of the constraints, because the current value of w2 is already 0 and
we have −x2 on the right-hand side. Still, in some sense, w2 is the first basic variable that becomes
0, so we choose it as the leaving variable. This results in the following dictionary:

maximize 7 − 2w1 − 5w2 − 3x1 + 2x3 + x5
subject to
x4 = 1 − w1 − x1 − x3
x2 = w1 − w2 + x3
w3 = 1 − w1 + w2 − 2x3
w4 = w1 + x1 + x3 − x5
w1, w2, w3, w4, x1, x2, x3, x4, x5 ≥ 0

We note that in this last pivot, the objective remained at 7 (whereas “normally” the objective in-
creases). Such a pivot is called a degenerate pivot. Degenerate pivots can cause difficulties in general:

3



for example, it is possible that a sequence of degenerate pivots returns us to the same dictionary
that we started with, resulting in an infinite loop. (This cannot happen with nondegenerate pivots,
because the strict increases in the objective make it impossible to return to the same dictionary.)
We will see how to deal with this in general later; however, “usually” degenerate pivots do not cause
any problems, and, as it turns out, it does not cause any trouble here. Let x3 be the next entering
variable, so that w3 becomes the next leaving variable. We obtain the following dictionary from this
(nondegenerate!) pivot:

maximize 8 − 3w1 − 4w2 − w3 − 3x1 + x5
subject to
x4 = 0.5 − 0.5w1 − 0.5w2 + 0.5w3 − x1
x2 = 0.5 + 0.5w1 − 0.5w2 − 0.5w3

x3 = 0.5 − 0.5w1 + 0.5w2 − 0.5w3

w4 = 0.5 + 0.5w1 + 0.5w2 − 0.5w3 + x1 − x5
w1, w2, w3, w4, x1, x2, x3, x4, x5 ≥ 0

Finally, we choose x5, which is the only variable with a positive coefficient in the objective, as
the entering variable, so that w4 becomes the leaving variable and we end up with the following
dictionary:

maximize 8.5 − 2.5w1 − 3.5w2 − 1.5w3 − w4 − 2x1
subject to
x4 = 0.5 − 0.5w1 − 0.5w2 + 0.5w3 − x1
x2 = 0.5 + 0.5w1 − 0.5w2 − 0.5w3

x3 = 0.5 − 0.5w1 + 0.5w2 − 0.5w3

x5 = 0.5 + 0.5w1 + 0.5w2 − 0.5w3 − w4 + x1
w1, w2, w3, w4, x1, x2, x3, x4, x5 ≥ 0

Now, all of the coefficients in the objective are nonpositive, so we know that it is impossible to
obtain a better solution than 8.5, and we have arrived at the optimal solution which sets x2 = x3 =
x4 = x5 = 0.5.

3 General comments

In general, we can choose any nonbasic variable with positive coefficient in the objective as the
entering variable; as the leaving variable, we must choose the basic variable that drops to zero first
as the entering variable increases (and if there are multiple basic variables that drop to zero first, we
can choose any one of them). (It may be the case that no basic variables will ever drop to zero; in
this case, the linear program is unbounded, which we will illustrate with an example later.) Rules
for making the above choices are called pivoting rules.

In the above examples, we were lucky in the sense that whenever we changed a variable from
nonbasic to basic, it never changed back; as a result, in some sense, we traversed the shortest
possible path of pivots. Unfortunately, in general, this is not the case. In fact, for the common
pivoting rules, there are examples of linear programs where the simplex algorithm goes through a
path of exponentially many dictionaries (Klee-Minty cubes are a common example of such linear
programs). It is not known if there is a pivoting rule that only requires polynomially many pivots
on any example; in fact it is not known if there is always a path of only polynomially many pivots to
the optimal solution (this is related to a conjecture known as Hirsch’s conjecture from 1957, though
a counterexample to this conjecture was found in 2010). In practice, however, the simplex algorithm
tends to be extremely fast.

4



Things may be even worse, though: as we mentioned above, if there are degenerate pivots, then
there is the possibility that the simplex algorithm gets stuck in an infinite loop, that is, it cycles.
This can be taken care of, however, and this is the topic of the next section. (In fact, cycling is
extremely rare and hardly ever an issue even if we do not take precautions.)

4 Avoiding cycling

As it turns out, it is possible to avoid cycling in the simplex algorithm. One way to avoid this is to
use Bland’s rule for pivoting. When this rule has a choice among multiple variables as the entering
(or leaving) variable, it always chooses the one with the lowest index.

Another way to avoid cycling is to use the lexicographic method, which we present now. The idea
of the lexicographic method is that in some sense, we have to be extremely unlucky to have any
degenerate pivots at all, because if the parameters of the problem were chosen at random from an
interval it would be extremely unlikely that the constant in one of the constraints would be 0 at any
point. (Of course, in the real world, this is not how parameters are chosen, and we have already seen
from the combinatorial auction example that degenerate pivots do occur in “reasonable” instances.)
The idea of the lexiographic method is to slightly perturb the constants so that degeneracy does not
occur but the optimal solution is not really affected. While it is possible to use random perturbations,
this is not what the lexicographic method does. Rather, it adds ε1 to the first constraint, ε2 to the
second, and so on, where the εi are positive abstract symbols such that each εi is infinitesimally
smaller than the preceding εi−1, and ε1 is infinitesimally smaller than all the “true” parameters of
the instance.

For example, with our painting problem instance, we would start out with:

maximize 3x1 + 2x2
subject to
w1 = 16 + ε1 − 4x1 − 2x2
w2 = 8 + ε2 − x1 − 2x2
w3 = 5 + ε3 − x1 − x2
w1, w2, w3, x1, x2 ≥ 0

After the first pivot, we obtain:

maximize 12 + 0.75ε1 − 0.75w1 + 0.5x2
subject to
x1 = 4 + 0.25ε1 − 0.25w1 − 0.5x2
w2 = 4 − 0.25ε1 + ε2 + 0.25w1 − 1.5x2
w3 = 1 − 0.25ε1 + ε3 + 0.25w1 − 0.5x2
w1, w2, w3, x1, x2 ≥ 0

Once we reach an optimal solution, we simply drop all the εi terms from the solution.
It should be noted that none of this has any effect on our choice of entering variable; that is,

we can choose the entering variable however we like. It may, however, affect our choice of leaving
variable, because the εi may break a tie. As it turns out, they always break ties, that is, there is
never more than one choice for the leaving variable. It also turns out that none of the constants in
the constraints ever become zero, which immediately implies that we cannot have any degenerate
pivots and hence we cannot cycle. Both of these claims are implied by the following observation.
Consider the matrix of the coefficients on the εi in the constraints. For example, for the first dictio-
nary above, we have the matrix

5



 1 0 0
0 1 0
0 0 1


For the second dictionary, we have: 0.25 0 0

−0.25 1 0
−0.25 0 1


Now, it is not difficult to see that this matrix will always have full rank, that is, rank m, because

this is clearly true for the first matrix, and subsequent matrices are obtained by multiplying rows
by nonzero constants and adding multiples of other rows to rows. It follows that no row can ever
consist only of zeroes, hence there can be no degenerate pivots.

5 Unboundedness

We have skipped over the issue of what happens if the linear program is unbounded. This is best
illustrated with an example. Let us consider the following unbounded linear program:

maximize 3x1 + 2x2
subject to
w1 = 1 − x1 + x2
w2 = 1 + x1 − x2
w1, w2, x1, x2 ≥ 0

We first choose x1 as the entering variable, resulting in w1 being the leaving variable:

maximize 3 − 3w1 + 5x2
subject to
x1 = 1 − w1 + x2
w2 = 2 − w1

w1, w2, x1, x2 ≥ 0

Now we must choose x2 as the entering variable. However, as we increase x2, none of the basic
variables decrease. Hence, we can increase x2 forever, indicating that the program is unbounded.

6 Finding a feasible dictionary

So far, we have assumed that we have an initial feasible dictionary. While in many problems, setting
all of the variables to zero corresponds to a feasible solution, this is certainly not always the case.
If we do not have an initial feasible dictionary, we first need to find one, which can also be done
using the simplex algorithm. Finding an initial feasible dictionary is generally referred to as “Phase
1.” Going from there to the optimal solution (as we have done above) is called “Phase 2.” In this
section, we discuss Phase 1.

Let us again take our painting problem instance; we will add a constraint to it that we must
produce at least two reproductions of paintings, that is, x1 +x2 ≥ 2 or equivalently, −x1−x2 ≤ −2.
(Of course, this will not affect the optimal solution, because we know that even without this con-
straint, we create at least 2 reproductions.) This results in the following linear program:

6



maximize 3x1 + 2x2
subject to
4x1 + 2x2 ≤ 16
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
−x1 − x2 ≤ −2
x1 ≥ 0;x2 ≥ 0

Now, setting x1 = x2 = 0 is no longer a feasible solution. To find a feasible solution, we can
temporarily forget about the objective. Instead, we add an auxiliary variable x0, and we require that
each of the original constraints is violated by at most xo. This results in the following linear program:

maximize −x0
subject to
4x1 + 2x2 − x0 ≤ 16
x1 + 2x2 − x0 ≤ 8
x1 + x2 − x0 ≤ 5
−x1 − x2 − x0 ≤ −2
x0, x1, x2 ≥ 0

This linear program has an optimal solution with objective value 0 if and only if there is a feasible
solution to the original linear program. In equality form, we have:

maximize −x0
subject to
w1 = 16 − 4x1 − 2x2 + x0
w2 = 8 − x1 − 2x2 + x0
w3 = 5 − x1 − x2 + x0
w4 = −2 + x1 + x2 + x0
w1, w2, w3, w4, x0, x1, x2 ≥ 0

This is still not a feasible dictionary, but we can transform it into a feasible dictionary by choos-
ing x0 as the entering variable and the most negative basic variable, w4, as the leaving variable.
This results in the following dictionary:

maximize −2 − w4 + x1 + x2
subject to
w1 = 18 + w4 − 5x1 − 3x2
w2 = 10 + w4 − 2x1 − 3x2
w3 = 7 + w4 − 2x1 − 2x2
x0 = 2 + w4 − x1 − x2
w1, w2, w3, w4, x0, x1, x2 ≥ 0

Next, we choose (say) x1 as the entering variable, so that x0 is the leaving variable, resulting in:

7



maximize −x0
subject to
w1 = 8 − 4w4 + 2x2 + 5x0
w2 = 6 − w4 − x2 + 2x0
w3 = 3 − w4 + 2x0
x1 = 2 + w4 − x2 − x0
w1, w2, w3, w4, x0, x1, x2 ≥ 0

Now, all the coefficients in the objective are nonpositive, so we have found the optimal solution
to the auxiliary problem. We transform this into a feasible dictionary for the original problem by
simply dropping x0 everywhere, and replacing the objective with the original one:

maximize 3x1 + 2x2
subject to
w1 = 8 − 4w4 + 2x2
w2 = 6 − w4 − x2
w3 = 3 − w4

x1 = 2 + w4 − x2
w1, w2, w3, w4, x1, x2 ≥ 0

Because we now have a feasible dictionary, we can start Phase 2.

7 The simplex algorithm and duality

As it turns out, as the simplex solves the primal, it simultaneously solves the dual as well. We
illustrate this with our standard example.

maximize 3x1 + 2x2
subject to
4x1 + 2x2 ≤ 16
x1 + 2x2 ≤ 8
x1 + x2 ≤ 5
x1 ≥ 0;x2 ≥ 0

The dual (written as a maximization problem instance) is:

maximize −16y1 − 8y2 − 5y3
subject to
4y1 + y2 + y3 ≥ 3
2y1 + 2y2 + y3 ≥ 2
y1 ≥ 0; y2 ≥ 0; y3 ≥ 0

In equality form, the primal is:

maximize 3x1 + 2x2
subject to
w1 = 16 − 4x1 − 2x2
w2 = 8 − x1 − 2x2
w3 = 5 − x1 − x2
w1, w2, w3, x1, x2 ≥ 0

8



We can similarly write the dual in equality form:

maximize −16y1 − 8y2 − 5y3
subject to
z1 = −3 + 4y1 + y2 + y3
z2 = −2 + 2y1 + 2y2 + y3
z1, z2, y1, y2, y3 ≥ 0

It should be noted that this is not a feasible dictionary for the dual.
After the first pivot on the primal, for which x1 is the entering variable and w1 the leaving

variable, we get:

maximize 12 − 0.75w1 + 0.5x2
subject to
x1 = 4 − 0.25w1 − 0.5x2
w2 = 4 + 0.25w1 − 1.5x2
w3 = 1 + 0.25w1 − 0.5x2
w1, w2, w3, x1, x2 ≥ 0

We can perform the analogous pivot on the dual dictionary (it is possible to perform pivots on
infeasible dictionaries, as we saw in our discussion of Phase 1). We know that x1 corresponds to z1
and w1 to y1 (recall the complementary slackness theorem), so in the analogous pivot on the dual,
those are the entering and leaving variables. This results in the following dictionary for the dual.

maximize −12 − 4z1 − 4y2 − 1y3
subject to
y1 = 0.75 + 0.25z1 − 0.25y2 − 0.25y3
z2 = −0.5 + 0.5z1 + 1.5y2 + 0.5y3
z1, z2, y1, y2, y3 ≥ 0

This dictionary is still not feasible, but it seems to be getting closer. Can you see the relationship
betweeen the current primal dictionary and the current dual dictionary? Consider, in each case, the
matrix of all the constants and coefficients in the objective and right-hand sides of the constraints,
ignoring the variables. For the primal, this is a 4 × 3 matrix of rational numbers, and for the dual,
a 3 × 4 matrix. In fact, the dual matrix is the negative transpose of the primal matrix. This was
also the case in the original dictionaries. In fact, the simplex method preserves this property in each
pivot (as long as the pivot on the dual uses entering and leaving variables corresponding to those
used for the primal). The current dual dictionary is always the dictionary that would result directly
from taking the dual of the current primal dictionary.

We have one more pivot to go until we reach optimality. The resulting primal dictionary is:

maximize 13 − 0.5w1 − w3

subject to
x1 = 3 − 0.5w1 + w3

x2 = 2 + 0.5w1 − 2w3

w2 = 1 − 0.5w1 + 3w3

w1, w2, w3, x1, x2 ≥ 0

It should be noted that we reordered the constraints to keep the basic variables sorted. In the
dual, the entering variable is y3 (corresponding to the leaving variable w3 in the primal), and the
leaving variable is z2 (corresponding to the entering variable x2 in the primal), resulting in the
dictionary:

9



maximize −13 − 3z1 − 2z2 − 1y2
subject to
y1 = 0.5 + 0.5z1 − 0.5z2 + 0.5y2
y3 = 1 − 1z1 + 2z2 − 3y2
z1, z2, y1, y2, y3 ≥ 0

Again, the negative transpose property is preserved. The dual dictionary is now feasible because
all the constants in the constraints (the current values for the basic variables) are nonnegative.
This is equivalent to the coefficients in the objective all being nonpositive, which is the termination
condition for the simplex algorithm. Thus, once the simplex algorithm terminates on the primal, the
corresponding dual dictionary is feasible. Moreover, the objective value for the final dual dictionary
must be the negative of that for the optimal primal dictionary, by the negative transpose property;
if we convert the dual back to a minimization problem, then the objectives must be the same.
Therefore, the final dual dictionary must in fact be optimal. (In effect, this is a proof of the strong
duality theorem.) So we have found the optimal dual solution y1 = 0.5, y3 = 1. Actually, by
the negative transpose property, we could have read these values off directly from the objective
coefficients in the final primal dictionary. In effect, because of the negative transpose property,
there is no real reason to keep both the primal and the dual dictionaries around: one can easily
be constructed from the other. By this reasoning, for any problem, we can also run the simplex
algorithm on the dual, and from the result we can easily read off the solution to the primal. This is
known as the dual simplex method.

10


