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Announcement 

 

• Project proposal submission deadline is Fri, Oct 12 noon.  
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Recap: Laplace Mechanism 

Thm: If sensitivity of the query is S, then adding Laplace noise with 
parameter λ guarantees ε-differential privacy, when  

λ = S/ε 

 

Sensitivity: Smallest number s.t. for any d, d’ differing in one entry,  

|| q(d) – q(d’) ||  ≤  S(q)  

 

Histogram query: Sensitivity = 2 

• Variance / error on each entry = 2λ2 = 2x4/ε2 
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Laplace Mechanism is Suboptimal 

• Query 1: Number of cancer patients 

• Query 2: Number of cancer patients 

 

• If you answer both using Laplace mechanism 
– Sensitivity = 2 

– Error in each answer: 2x4/ε2 

– Average of two answers gives an error of 4/ε2 

 

• If you just answer the first and return the same answer 
– Sensitivity = 1 

– Error in the answer: 2/ε2 

Lecture 11 : 590.03 Fall 12 4 



Outline 

• Constrained inference 
– Ensure that the returned answers are consistent with each other.  

 

 

• Query Strategy 
– Answer a different set of strategy queries A 

– Answer original queries using A 

 

– Universal Histograms 

– Wavelet Mechanism    [Xiao et al ICDE 09] 

–  Matrix Mechanism                   [Li et al PODS 10] 
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Note 

• The following solution ideas are useful whenever  
– You want to answer a set of correlated queries. 

– Queries are based on noisy measurements. 

– Each measurement (x1 or x1+x2) has similar variance. 
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Range Queries 

• Given a set of values {v1, v2, …, vn} 

• Let xi = number of tuples with value v1.  

• Range query: q(j,k) = xj + … + xk 

 

 

Q: Suppose we want to answer all range queries?  
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Range Queries 

Q: Suppose we want to answer all range queries?  

 

Strategy 1: Answer all range queries using Laplace mechanism 

 

• Sensitivity = O(n2) 

• O(n4/ε2) total error across all range queries.   

• May reduce using constrained optimization …  
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Range Queries 

Q: Suppose we want to answer all range queries?  

 

Strategy 2: Answer all xi queries using Laplace mechanism 
        Answer range queries using noisy xi values. 

 

• O(1/ε2) error for each xi.   

• Error(q(1,n)) = O(n/ε2) 

• Total error on all range queries : O(n3/ε2) 
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Universal Histograms for Range Queries 

Strategy 3:  
Answer sufficient statistics using Laplace mechanism 
Answer range queries using noisy sufficient statistics. 
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x1 x2 x3 x4 x5 x6 x7 x8 

x12 x34 x56 x78 

x1234 x5678 

x1-8 

[Hay et al VLDB 2010] 



Universal Histograms for Range Queries 

• Sensitivity: log n 

• q(2,6) = x2+x3+x4+x5+x6  Error = 2 x 5log2n/ε2 
            = x2 + x34 + x56   Error = 2 x 3log2n/ε2 
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Universal Histograms for Range Queries 

• Every range query can be answered by summing at most log n 
different noisy answers 

• Maximum error on any range query = O(log3n / ε2) 

• Total error on all range queries = O(n2 log3n / ε2) 
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Outline 

• Constrained inference 
– Ensure that the returned answers are consistent with each other.  

 

 

• Query Strategy 
– Answer a different set of strategy queries A 

– Answer original queries using A 

 

– Universal Histograms 

– Wavelet Mechanism 

–  Matrix Mechanism 
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Wavelet Mechanism 
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x1 x2 x3 x4 x5 xn 

C2 C3 Cm  

…  

…  C1 

Step 1: Compute 
Wavelet coefficients 

C2+η2 C3+η3 Cm+ηm  …  C1+η1 

Step 2: Add noise to 
coefficients 

y1 y2 y3 y4 y5 yn …  
Step 3:  Reconstruct 

original counts 



Haar Wavelet 
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Haar Wavelet 
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For an internal node,  

Let a = average of leaves in 
left subtree 

Let b = average of leaves in 
right subtree 

 

 

 



Haar Wavelet Reconstruction 
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Sum of coefficients on root 
to leaf path 

• + if xi is in the left 
subtree of coefficient 

• - if xi is in right subtree 

 

 



Haar Wavelet : Range Queries 
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Range Query: number of tuples in a 
range S = [a,b] 

 

Let α(c) be the number of values in the 
left subtree of c that are in S 

Let β(c) be the number of values in the 
right subtree of c that are in S 

 

 

 



Haar Wavelet : Range Queries 
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 α(c) – β(c) = 0 when no leaves under c 
are contained in S 

 α(c) – β(c) = 0 when all leaves under c 
are contained in S 

 

Only need to consider those coefficients 
with partial overlap with the range.  

 



Haar Wavelet 
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For an internal node,  

Let a = average of leaves in 
left subtree 

Let b = average of leaves in 
right subtree 

 

 

 



Adding noise to wavelet coefficients 

• Associate each coefficient with a weight 

•  level( c ) = height of c in the tree. 

 

 

• Generalized sensitivity (ρ) 
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Adding noise to wavelet coefficients 

Theorem: Adding noise to a coefficient c from Laplace(λ/W(c)) 
guarantees (2ρ/λ)-differential privacy.  

 

Proof:  
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Generalized Sensitivity of Wavelet 
Mechanism 

 

 

 

Proof: 

• Any coefficient changes by 1/m, where m is the number of values 
in its subtree. 

•  m = 1/W(c) 

• Only c0 and the coefficients in one root to leaf path change if 
some xi changes by 1.  

Lecture 11 : 590.03 Fall 12 23 



Error in answering range queries 

 

• Range query depends on at most O(log n) coefficients.  

 

• Error in each coefficient is at most O(log2n/ε2) 

 

• Error in a range query is O(log3n/ε2) 
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Summary of Wavelet Mechanism 

• Query Strategy: use wavelet coefficients 

 

• Can be computed in linear time 

 

• Noise in each range query: O(log3n/ε2) 
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Outline 

• Constrained inference 
– Ensure that the returned answers are consistent with each other.  

 

 

• Query Strategy 
– Answer a different set of strategy queries A 

– Answer original queries using A 

 

– Universal Histograms 

– Wavelet Mechanism 

–  Matrix Mechanism 
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Linear Queries 

• A set of linear queries can be represented by a matrix 

• X = [x1, x2, x3, x4] is a vector  
representing the counts of 4 values 

• H4 X represents the following 7 queries 
–  x1+x2+x3+x4 

–  x1+x2 

–  x3+x4 

–  x1 

–  x2 

–  x3 

–  x4 
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Query Matrices 
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Identity  Binary Index Haar Wavelet 



Sensitivity of a Query Matrix 

• How many queries are affected by a change in a single count? 
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Sensitivity = 1 Sensitivity = 3 Sensitivity = 3 



Laplace Mechanism 
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Sensitivity 

Noise Vector of 
Laplace(1) 



Matrix Mechanism 
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Original 
Data Noisy 

Representation 

Reconstructed Data 

Final query answer 



Reconstruction 
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Matrix Mechanism 
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Error analysis 
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Extreme strategies 

• Strategy A = In 
– Noisily answer each xi 

– Answer queries using noisy counts 

 

 

 

• Strategy A = W 
– Add noise to all the query answers 
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Good when each 
query hits a few 

values.  

Good when 
sensitivity is small 



Finding the Optimal Strategy 

• Find A that minimizes TotalErrorA(W) 
– Reduces to solving a semi-definite program with rank constraints 

– O(n6) running time. 

 

•  See paper for approximations and an interesting discussion on 
geometry. 
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Summary 

• A linear query workload and strategy can be modeled using 
matrices 

 

• Previous techniques to find a better strategy to answer a batch of 
queries is subsumed by the matrix mechanism 

 

• General mechanism to answer queries.  

 

• Noise depends on the sensitivity of the strategy and AtA-1 
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Next Class 

• Sparse Vector Technique 
– Answering a workload of “sparse” queries 
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