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Outline

Background: Domain-independent privacy definitions
No Free Lunch in Data Privacy [Kifer-M SIGMOD ‘11]

Correlations: A case for domain specific privacy

definitions [Kifer-M SIGMOD ‘11]
Pufferfish Privacy Framework [Kifer-M PODS’12]
Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]
— Next class
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Utility: fprivate approximates f

Data Privacy Problem

Privacy: No breach about any individual
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Data Privacy in the real world

Application | Data Collector | Third Party Private Function (utility)
(adversary) | Information

Medical Hospital Epidemiologist Disease Correlation between
disease and geography

Genome Hospital Statistician/ Genome Correlation between
analysis Researcher genome and disease
Advertising Google/FB/Y! Advertiser Clicks/Brows Number of clicks on an ad

ing by age/region/gender ...

Social Facebook Another user  Friend links  Recommend other users

Recommen- / profile or ads to users based on
dations social network
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Semantic Privacy

... nothing about an individual should be learnable from the
database that cannot be learned without access to the database.

T. Dalenius, 1977
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Can we achieve semantic privacy?

e ..oristhereone (“precious...”) privacy definition to rule them all?
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Defining Privacy
* In order to allow utility, a non-negligible amount of information
about an individual must be disclosed to the adversary.

* Measuring information disclosed to an adversary involves
carefully modeling the background knowledge already available

to the adversary.

e ... but we do not know what information is available to the
adversary.

Duke
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Many definitions & several attacks

Sweeney et al
[JUFKS ‘02

Machanavajjhala et. al
TKDD ‘07

Liet.al ICDE ‘07

achanavajjhala et. al

Differential VLDB ‘09

Privacy
Dwork et.al ICALP ‘06
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Linkage attack
Background knowledge attack

Minimality /Reconstruction
attack

de Finetti attack
Composition attack
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Composability pwork et al, Tcc 06]

Theorem (Composability):
If algorithms A, A,, ..., A, use independent
randomness and each A, satisfies g-differential

privacy, resp.

Then, outputting all the answers together
satisfies differential privacy with

E=€, +€+..+§

Duke
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Differential Privacy

Domain independent privacy definition that is independent of
the attacker.

Tolerates many attacks that other definitions are susceptible to.

— Avoids composition attacks
— Claimed to be tolerant against adversaries with arbitrary background
knowledge.

Allows simple, efficient and useful privacy mechanisms
— Used in a live US Census Product [M et al ICDE ‘08]

Duke
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Outline

Background: Domain independent privacy definitions.
No Free Lunch in Data Privacy [Kifer-M SIGMOD ‘11]

Correlations: A case for domain specific privacy

definitions [Kifer-M SIGMOD ‘11]
Pufferfish Privacy Framework [Kifer-M PODS’12]
Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]

— Current research
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No Free Lunch Theorem

It is not possible to guarantee any utility in addition to privacy,
without making assumptions about

° the data generating distribution [Kifer-MaChanavajjhala SIGMOD ‘11]

* the background knowledge available [Dwork-Naor JPC ‘10]
to an adversary

Duke
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Discriminant: Sliver of Utility

Does an algorithm A provide any utility?

w(k, A) > c if there are kinputs {D,, ..., D,} such that
A(D,) give different outputs with probability > c.

Example:
If A can distinguish between tables of size <100 and size
>1000000000, then w(2,A) = 1.

Duke
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Discriminant: Sliver of Utility

Theorem: The discriminant of Laplace mechanismis 1.

Proof:

* Let Di = a database with n records and n-i/k cancer patients
Let Si = the range [n-i/k — n/3k, n-i/k + n/3k]. All Si are disjoint

* Let M be the laplace mechanism on the query “how many cancer
patients are there”,

e Pr(M(Di) € Si) = Pr(Noise < n/3k)>1—e"/3ke=1-§

* Hence, discriminant w(k,M) > 1- 6
* As n tends to infinity, discriminant tends to 1.
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Discriminant: Sliver of Utility

Does an algorithm A provide any utility?

w(k, A) > c if there are kinputs {D,, ..., D,} such that
A(D,) give different outputs with probability > c.

If w(k, A) is close to 1
- we may get some utility after using A.

If w(k, A) is close to 0
- we cannot distinguish any k inputs — no utility.

Duke

UNINVMERSITY



Non-privacy

* Disrandomly drawn from P, ..

* g is asensitive query with k answers, s.t.,

g‘: knows P, ., but cannot guess value of g
* Aisnot private if:

g‘: can guess q correctly based on P, and A

Duke
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No Free Lunch Theorem

* Let A be a privacy mechanism with w(k,A) > 1- ¢

* Let g be a sensitive query with k possible outcomes.

* There exists a data generating distribution P__,, s.t.

— g(D) is uniformly distributed, but

— %‘i wins with probability greater than 1-¢

Duke
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Outline

Background: Domain independent privacy definitions
No Free Lunch in Data Privacy [Kifer-M SIGMOD ‘11]

Correlations: A case for domain specific privacy

definitions [Kifer-M SIGMOD ‘11]
Pufferfish Privacy Framework [Kifer-M PODS’12]
Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M “13]

— Current research
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Correlations & Differential Privacy

When an adversary knows that individuals in a table are
correlated, then (s)he can learn sensitive information about

individuals even from the output of a differentially private
mechanism.

Example 1: Contingency tables with pre-released exact counts

Example 2: Social Networks

Lecture 15: 590.03 Fall 12 20 Duke
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Contingency tables

Each tuple takes k=4
different values

EE O
— 2 2
— 2 8

Count(m, /)

Lecture 15: 590.03 Fall 12 21 Duke

UNINVMERSITY




Contingency tables

Want to release counts

privately
- I
] ? ?
— ? ?

Count(mm, 1)
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Laplace Mechanism

3 3
— 2 + Lap(1/g) | 2 + Lap(1/e)
— 2 + Lap(1/g) ‘8 + Lap(1/e;)

|
D Mean : 8
Variance : 2/¢&2

Guarantees differential privacy.
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Marginal counts

3 3
— 2 +Lap(1/e) | 2+ Lap(1l/e) | 4
- 2 +Lap(1/€) | 8 +Lap(1l/e) | 10

4 10

Auxiliary marginals published for following reasons:

1. Legal: 2002 Supreme Court case Utah v. Evans

D 2. Contractual: Advertisers must know exact
demographics at coarse granularities

Does Laplace mechanism still guarantee
privacy?
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Marginal counts

] 1
Bl | 2+Llap(l/e)| 2+Lap(l/e) | 4
mm | 2+Llap(1/e)| 8 +Llap(l/e) | 10

A 10

Count (Imm,=3) = 8 + Lap(1/¢)
Count (m,=3) = 8 - Lap(1/¢)
Count (Imm,=3) = 8 - Lap(1/¢)
Count (Im,=3) = 8 + Lap(1/¢)
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Marginal counts

1 1
BE | 2+Llap(l/e)| 2+Lap(1l/e) | 4
mm | 2+Llap(1/e)| 8+Lap(l/e) | 10

4 10/
/

Mean : 8
Variance : 2/ke?

8‘: can reconstruct the table with

high precision for large k D k
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Reason for Privacy Breach

* Pairs of tables that differ
in one tuple

. %‘: cannot distinguish them

Tables that do not
satisfy background
knowledge

Space of all
possible tables
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Reason for Privacy Breach

%‘ can distinguish between
“every pair of these tables
based on the output

Space of all
possible tables
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Correlations & Differential Privacy

When an adversary knows that individuals in a table are
correlated, then (s)he can learn sensitive information about

individuals even from the output of a differentially private
mechanism.

Example 1: Contingency tables with pre-released exact counts

Example 2: Social Networks
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A count query in a social network

 Want to release the number of edges between blue and green

communities.

* Should not disclose the presence/absence of Bob-Alice edge.

Duke
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Adversary knows how social networks
evolve

World 1:

World 2:

Community A Community B Community A do Community B

 Depending on the social network evolution model,
(d,-d,) is linear or even super-linear in the size of the network.

Duke
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Differential privacy fails to avoid breach

Output (d, + )

6 ~ Laplace(1/¢)

Output (d, +5)

Community A d Community B

Adversary can distinguish between the two
worlds if d, —d, is large.

Duke
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Outline

Background: Domain independent privacy definitions
No Free Lunch in Data Privacy [Kifer-M SIGMOD ‘11]

Correlations: A case for domain-specific privacy

definitions [Kifer-M SIGMOD ‘11]
Pufferfish Privacy Framework [Kifer-M PODS’12]
Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]

— Current research
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Why we need domain specific privacy?

* For handling correlations
— Prereleased marginals & Social networks [Kifer-M SIGMOD ‘11]

e Utility driven applications

— For some applications existing privacy definitions
do not provide sufficient utility [M et al PVLDB ‘11]

* Personalized privacy & aggregate secrets [Kifer-M PODS “12]

Qn: How to design principled privacy definitions customized to
such scenarios?
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Pufferfish Framework

e Pufferfish (data): e Chef (algorithm):
e contains tetrodotoxin e Processes the fish.
(sensitive information).

e Fugu (sanitized data):
e Tasty (high utility)
e Minimal toxins

e (ertification and license

e Toxin is everywhere: (privacy definition): e Minimal leakage of
e Liver ® Rules chef must sensitive information
e Intestines follow / restrictions
e Skin / Muscles on algorithm
o Rernoving all toxin e (Guarantees output 1S
= removing fish (relatively) safe.
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Pufferfish Semantics

* What is being kept secret?
e Who are the adversaries?

e How is information disclosure bounded?
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Sensitive Information

* Secrets: S be a set of potentially sensitive statements
— “individual j’s record is in the data, and j has Cancer”
— “individual j’s record is not in the data”

* Discriminative Pairs: Spairs is a subset of SxS. Mutually exclusive
pairs of secrets.
— (“Bob is in the table”, “Bob is not in the table”)
— (“Bob has cancer”, “Bob has diabetes”)
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Adversaries

An adversary can be completely characterized by his/her prior
information about the data

— We do not assume computational limits

Data Evolution Scenarios: set of all probability distributions that
could have generated the data.

— No assumptions: All probability distributions over data instances are
possible.

— I.I.D.: Set of all f such that: P(data ={r,, r,, ..., r,}) = f(r;) x f(r,) x...x f(r\)
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Information Disclosure

 Mechanism M satisfies e-Pufferfish(S, Spairs, D), if for every
— W € Range(M),
— (s, 5;) € Spairs
— ©&eD,suchthatP(s, | 6) =0, P(s; | ) 20

P(M(data) =w | s, 0) <e®P(M(data)=w | s;, )
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Pufferfish Semantic Guarantee

B_E

P(Sg ‘ fm(@ata) = w@)/P(S—; | 9)

< o€
= P(s; | M(Data) =w.0)/ P(s; | 6) =

Prior odds of
S; VS S;

Posterior odds
of s; Vs s;
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Assumptionless Privacy

Suppose we want to make protect against any adversary
— No assumptions about adversary’s background knowledge

Spairs:
— “record j is in the table with value x” vs “record j is not in the table”

Data Evolution: All probability distributions over data instances
are possible.

A mechanism satisfies e-Assumptionless Privacy
if and only if
for every pair of database D1, D2, and every output w
P(M(D1) = w) £ et P(M(D2) = w)
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Assumptionless Privacy

A mechanism satisfies e-Assumptionless Privacy
if and only if
for every pair of database D1, D2, and every output w
P(M(D1) = w) < e P(M(D2) = w)

Suppose we want to compute the number of individuals having
cancer.

D1: all individuals have cancer
D2: no individual has cancer

For assumptionless privacy, the output w should not be too different if the
input was D1 or D2

Therefore, need O(N) noise (where N = size of the input database).

Hence, not much utility. D ]
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Applying Pufferfish to Differential Privacy

* Spairs:
— “record j is in the table” vs “record j is not in the table”
— “record jis in the table with value x” vs “record j is not in the table”

* Data evolution:
— Probability record j is in the table: r;
— Probability distribution over values of record j: f;
— Forall®=1[f,f, f5, ..., f,, M, T, ..., T ]

— P[Data=D | 6] = rl (1_T[j) X I_Irj inD T4 X fj(rj)

rjinotinD
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Applying Pufferfish to Differential Privacy

* Spairs:
— “record jis in the table” vs “record j is not in the table”
— “record jis in the table with value x” vs “record j is not in the table”

e Data evolution:

— Forall®=1f, f,, f5, ..., f,, T, T, ..., T ]

- P[Data =D | e] - rIrj not in D (1_T[j) X rIrj inD T[j X fj(rj)

A mechanism M satisfies differential privacy
if and only if

it satisfies Pufferfish instantiated using Spairs and {0}
(as defined above)
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Differential Privacy

Sensitive information:

All pairs of secrets “individual j is in the table with value x” vs
“individual j is not in the table”

Adversary:
Adversaries who believe the data is generated using any
probability distribution that is independent across individuals

Disclosure:

ratio of the prior and posterior odds of the adversary is bounded
by et
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Characterizing “good” privacy definition

We can derive conditions under which a privacy definition resists
attacks.

For instance, any privacy definition that can be phrased as follows
composes with itself.

Vw,P(M(D,) = w) < etP(M(D,) =w)
v(D,,D,) e D c 2!

where | is the set of all tables.
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Summary of Pufferfish

A semantic approach to defining privacy

— Enumerates the information that is secret and the set of adversaries.

— Bounds the odds ratio of pairs of mutually exclusive secrets
* Helps understand assumptions under which privacy is guaranteed

* Provides a common framework to develop theory of privacy
definitions

— General sufficient conditions for composition of privacy (see paper)
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Next Class

* Application of Pufferfish to Correlated Data

* Relaxations of differential privacy
— E-Privacy
— Crowd-blending privacy
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