Privacy of Correlated Data & Relaxations of Differential Privacy

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Outline

- Recap: Pufferfish Privacy Framework
- Defining Privacy for Correlated Data
 - Induced Neighbor Privacy
- Relaxing differential privacy for utility
 - Crowd Blending Privacy
 - E-privacy

[Gehrke et al CRYPTO '12] [**M** et al VLDB '09]

Lecture 16: 590.03 Fall 12

[Kifer-**M** PODS'12]

[Kifer-M PODS'12 & Ding-M '13]

Recap: No Free Lunch Theorem

It is not possible to guarantee *any* utility in addition to privacy, *without making assumptions about*

• the data generating distribution

[Kifer-Machanavajjhala SIGMOD '11]

• the background knowledge available to an adversary

[Dwork-Naor JPC '10]

Correlations & Differential Privacy

- When an adversary knows that individuals in a table are correlated, then (s)he can learn sensitive information about individuals even from the output of a differentially private mechanism.
- Example 1: Contingency tables with pre-released exact counts
- Example 2: Social Networks

6

U

NI

Е

Recap: Why we need domain specific privacy?

- For handling correlations
 - Prereleased marginals & Social networks

[Kifer-M SIGMOD '11]

- Utility driven applications
 - For some applications existing privacy definitions
 do not provide sufficient utility
 [M et al PVLDB '11]
- Personalized privacy & aggregate secrets [Kifer-M PODS '12]

Qn: How to design principled privacy definitions customized to such scenarios?

Recap: Pufferfish Framework

- Pufferfish (data):
 - contains tetrodotoxin (sensitive information).
- Toxin is everywhere:
 - Liver
 - Intestines
 - Skin / Muscles
- Removing all toxin
 removing fish

- Chef (algorithm):
 - Processes the fish.
- Certification and license (privacy definition):
 - Rules chef must follow / restrictions on algorithm
 - Guarantees output is (relatively) safe.

- Fugu (sanitized data):
 - Tasty (high utility)
 - Minimal toxins
 - Minimal leakage of sensitive information

Recap: Pufferfish Semantics

- What is being kept secret?
- Who are the adversaries?
- How is information disclosure bounded?

Recap: Sensitive Information

- **Secrets**: S be a set of potentially sensitive statements
 - "individual j's record is in the data, and j has Cancer"
 - "individual j's record is not in the data"

- **Discriminative Pairs**: Spairs is a subset of SxS. Mutually exclusive pairs of secrets.
 - ("Bob is in the table", "Bob is not in the table")
 - ("Bob has cancer", "Bob has diabetes")

Recap: Adversaries

- An adversary can be completely characterized by his/her prior information about the data
 - We do not assume computational limits
- **Data Evolution Scenarios**: set of all probability distributions that could have generated the data.
 - No assumptions: All probability distributions over data instances are possible.

- *I.I.D.*: Set of all f such that: $P(data = \{r_1, r_2, ..., r_k\}) = f(r_1) \times f(r_2) \times ... \times f(r_k)$

Recap: Pufferfish Framework

- Mechanism M satisfies ε-Pufferfish(S, Spairs, D), if for every
 - w ε Range(M),
 - $(s_i, s_j) \epsilon$ Spairs
 - − Θ ε D, such that $P(s_i | \theta) \neq 0$, $P(s_i | \theta) \neq 0$

 $P(M(data) = w | s_i, \theta) \le e^{\varepsilon} P(M(data) = w | s_i, \theta)$

Recap: Pufferfish Semantic Guarantee

$$e^{-\epsilon} \leq \frac{P(s_i \mid \mathfrak{M}(\mathfrak{Data}) = \omega, \theta)}{P(s_j \mid \mathfrak{M}(\mathfrak{Data}) = \omega, \theta)} / \frac{P(s_i \mid \theta)}{P(s_j \mid \theta)} \leq e^{\epsilon}$$
Posterior odds
of s_i vs s_j
Prior odds of
s_i vs s_j

Recap: Pufferfish & Differential Privacy

- Spairs:
 - "record j is in the table" vs "record j is not in the table"
 - "record j is in the table with value x" vs "record j is not in the table"
- Data evolution:
 - For all $\theta = [f_1, f_2, f_3, ..., f_k, \pi_1, \pi_2, ..., \pi_k]$

- P[Data = D |
$$\theta$$
] = $\prod_{r_j \text{ not in } D} (1-\pi_j) \times \prod_{r_j \text{ in } D} \pi_j \times f_j(r_j)$

A mechanism M satisfies differential privacy if and only if it satisfies Pufferfish instantiated using Spairs and {θ} (as defined above)

Outline

• Recap: Pufferfish Privacy Framework

[Kifer-M PODS'12]

- Defining Privacy for Correlated Data
 - Current research
- Relaxing differential privacy for utility
 - Crowd Blending Privacy
 - E-privacy

[Gehrke et al CRYPTO '12] [**M** et al VLDB '09]

[Kifer-M PODS'12 & Ding-M '13]

Reason for Privacy Breach

can distinguish between every pair of these tables based on the output

Space of all possible tables

Lecture 16: 590.03 Fall 12

18

Induced Neighbor Privacy

• *Differential Privacy*: Neighboring tables differ in one value ... But one or both the neighbors may not satisfy the constraints.

Induced Neighbor Privacy

Induces Neighbors (Q)

[Kifer-**M** '11 & Pan]

- Pick an individual j
- Consider 2 tables D_a, D_b that differ in j's record
 D_a(j) = a, and D_b(j) = b
- D_a and D_b are induced neighbors if they are **minimally different**
 - D_a and D_b satisfy the constraints in Q
 - Let M = {m1, m2, ..., mk} be the smallest set of *moves* that change D_a to D_b
 - There does not exist a D_c which satisfies the constraints and can be constructed from D_a using a subset of moves from D_b

Example 1

Table B

a1,b2	
a2,b2	
a3,b3	

Is Table B an Induced Neighbor of Table A given the row and column sums?

Ans: NO

Example 1

1

1

22

1

UNIVERS

	Table A	N			Evample 2		Table	В		
	a1,b1				Example Z	a1,b2	2			
	a2,b2									
	a3,b3		ls T	abl	B an Induced Neighbo	a3,b:	1			
	a1,b1		of]	Гаb um	e A given the row and sums?	a1,b2	2			
	a2,b2		column sums:					3		
	a3,b3				Ans: NO		a3,b:	1		
	a1	 a2	a3			a1	a2	a3		
b1	2			2	b1			2	2	
b2		2		2	b2	2			2	
b3			2	2	b3		2		2	
	2	2	2	+		2	2	2		

Lecture 16: 590.03 Fall 12

23

UNIVERSITY

Example 2

Example 3

Induced Neighbors Privacy and Pufferfish

- Given a set of count constraints Q,
- Spairs:
 - "record j is in the table" vs "record j is not in the table"
 - "record j is in the table with value x" vs "record j is not in the table"
- Data evolution:
 - For all $\theta = [f_1, f_2, f_3, ..., f_k, \pi_1, \pi_2, ..., \pi_k]$
 - P[Data = D | θ] $\alpha \prod_{r_j \text{ not in D}} (1-\pi_j) \times \prod_{r_j \text{ in D}} \pi_j \times f_j(r_j)$, if D satisfies Q
 - $P[Data = D | \theta] = 0$, if D does not satisfy Q

Conjecture: A mechanism M satisfies induced neighbors privacy if and only if

it satisfies Pufferfish instantiated using Spairs and $\{\theta\}$

Laplace Mechanism for Induced Neighbors Privacy

Thm: If induced-sensitivity of the query is S_{in}(q), then adding Lap(λ) noise guarantees ε-participation privacy.

$$\lambda = S_{in}(q)/\epsilon$$

 $S_{in}(q)$: Smallest number s.t. for any induced-neighbors d, d', || q(d) − q(d') ||₁ ≤ $S_{in}(q)$

q_{a1,b1}: The number of records with A = a1 and B = b1?
 – Sensitivity = ?

- q_{b1} : The number of records with B=b1?
 - Sensitivity = ?

q_{all}: All the counts in the contingency table?
 – Sensitivity = ?

q_{a1,b1}: The number of records with A = a1 and B = b1?
 – Sensitivity = 1

- q_{b1} : The number of records with B=b1?
 - Sensitivity = 0

q_{all}: All the counts in the contingency table?
 – Sensitivity = 6

What is the sensitivity if all counts in the contingency table are released?

• Sensitivity ≥ 6

2			2		1		1	2		+1		-1	2
	2		2	_	1	1		2	_	-1	+1		2
		2	2	_		1	1	2			-1	+1	2
2	2	2			2	2	2		•	2	2	2	
Table A					Table C				•	Diff			

- The Diff between two induced neighbors represents the moves
 - + means addition and means deletion.
 - +1 in each cell must be offset by a -1 in the same row and another -1 in the same column (degree = 2)
 - Hence, if we have an edge between every +1 and -1 in the same row or column, we get a graph which is a collection of cycles!.

Simple cycle can have at most min(2r, 2c) nodes

- where r = number of rows
 - c = number of columns

34

U

NI

VERS

Computing induced sensitivity

2D case:

 q_{all} : outputs all the counts in a 2-D contingency table. Marginals: row and column sums. The induced-sensitivity of $q_{all} = min(2r, 2c)$.

General Case: Deciding whether $S_{in}(q) > 0$ is NP-hard.

Conjecture: Computing S_{in}(q) is hard (and complete) for the second level of the polynomial hierarchy.

Summary

- Correlations in the data can allow adversaries to learn sensitive information even from a differentially private release.
- Induced Neighbors Privacy helps limit this disclosure when correlations are due constraints that are publicly known about the data.
- Algorithms for differential privacy can be used to ensure induced neighbor privacy by using the appropriate sensitivity.

Open Questions

- Induced neighbor privacy for general count constraints
 - Are ways to approximate the sensitivity?
- Answering queries using noisy data + exact knowledge
- Privacy of social networks
 - Adversaries may use social network evolution models to infer sensitive information about edges in a network [Kifer-M SIGMOD '11]
 - Can correlations in a social network be generatively described?

Outline

• Recap: Pufferfish Privacy Framework

[Kifer-M PODS'12]

- Defining Privacy for Correlated Data
 - Current research
- Relaxing differential privacy for utility
 - Crowd Blending Privacy
 - E-privacy

[Kifer-M PODS'12 & Ding-M '13]

[Gehrke et al CRYPTO '12] [**M** et al VLDB '09]

Recap: Pufferfish & Differential Privacy

- Spairs:
 - "record j is in the table" vs "record j is not in the table"
 - "record j is in the table with value x" vs "record j is not in the table"
- Data evolution:
 - For all $\theta = [f_1, f_2, f_3, ..., f_k, \pi_1, \pi_2, ..., \pi_k]$
 - P[Data = D | θ] = $\prod_{r_j \text{ not in } D} (1-\pi_j) \times \prod_{r_j \text{ in } D} \pi_j \times f_j(r_j)$

An adversary may know an arbitrary distribution about each individual

39

A mechanism M satisfies differential privacy if and only if

it satisfies Pufferfish instantiated using Spairs and $\{\theta\}$

Need for relaxed notions of privacy

- In certain applications, differentially private mechanisms do not provide sufficient utility
- How to define privacy while guarding against restricted forms of attackers?
 - Need to be resistant to attacks: Previous definitions were susceptible to composition, minimality, and other attacks.

Approaches to Relax Privacy

- Computationally Bounded Adversaries [Groce et al TCC '11]
- Allowing certain disclosures

[Gehrke et al CRYPTO '12]

• Considering "realistic" adversaries with bounded prior knowledge [M et al VLDB '09]

Restricting the Adversary's computational power

- Consider attackers who can execute a polynomial time Turing machine (e.g., only use algorithms in P)
- [Groce et al TCC '11]

"... for queries with output in R^d (for a constant d) and a natural class of utilities, **any computationally private mechanism can be converted to a statistically private mechanism** that is roughly as efficient and achieves almost the same utility ..."

Crowd-blending Privacy

[Gehrke et al CRYPTO '12]

Definition: Individuals t and t' in a database D are *indistinguishable* with respect to mechanism M if, for all outputs w $P[M(D) = w] \le e^{\varepsilon} P[M(D_{t,t'}) = w]$ where, $D_{t,t'}$ is the database where t is replaced with t'

Blending in a Crowd:

An individual t in D is said to ε -blend in a crowd of k people with respect to mechanism M if t is indistinguishable from k-1 other individuals in the data.

Crowd Blending Privacy

This individual 0-blends in a crowd of size 8

Crowd Blending Privacy

D

Every tuple ε -blends in a crowd of size N = 14

Crowd Blending Privacy

Definition:

A mechanism M is (k, ε) -crowd blending private if for every database D and every individual t,

- either, t ε-blends in a crowd of size k

- or, for all w, $P(M(D) = w) \le e^{\varepsilon} P(M(D - \{t\}) = w)$

Mechanisms

- Release a histogram by suppressing all counts less than k
 - Satisfies (K,0)-crowd blending privacy
- Release a histogram by adding Laplace noise to counts less than k
 - Satisfies (K, ε)-crowd blending privacy

Weaker than differential privacy

- Adversary can infer a sensitive property of an individual. But it will be shared by at least k other people
 - This looks like a property of the population rather than that of the individual.

• The definition does not satisfy composability.

Sampling + Crowd-blending => Differential Privacy

- Let M_p be a mechanism that:
 - Constructs a sample S by picking each record in the data with probability p
 - Executes mechanism M on S.

Theorem:

If M is (k,ε) -crowd-blending private (for k > 1). Then M_p satisfies:

 $\forall D, D'$ that differ in one record, $\forall w \in Range(M)$

$$\begin{split} P\big(M_p(D) = w\big) &\leq e^{\varepsilon} P\big(M_p(D') = w\big) + \delta \\ \varepsilon &= \ln\left(pe^{\varepsilon} \cdot \left(\frac{2-p}{1-p}\right) + 1 - p\right) \qquad \delta = e^{-\Omega(k \cdot (1-p)^2)} \end{split}$$

49 Duriversity

Open Questions

- What other mechanisms satisfy Crowd-blending privacy?
- Given a privacy budget, can we answer a workload of queries with minimum error by using the sampling + crowd-blending approach?
- Sampling + k-anonymity => Differential Privacy
 - What other mechanisms in addition to sampling give sufficient privacy?
- How big should K be?
 - K is the boundary between individual-specific and population level properties.

Next Class

- E-privacy
 - Relaxation of differential privacy which limits the adversaries considered.

• Application of privacy technology to US Census

References

[Groce et al TCC '11]

A. Groce, J. Katz, A. Yerukhimovic, "Limits on computational privacy in the client/server setting", TCC 2011

[Gehrke et al CRYPTO '12]

J. Gehrke, M. Hay, E. Liu, R. Pass, "Crowd Blending Privacy", CRYPTO 2012

[M et al VLDB '09]

A. Machanavajjhala, J. Gehrke, M. Gotz, "Data Publishing against Realistic Adversaries", PVLDB 2(1) 2009

[Kifer-M SIGMOD'11]

D. Kifer, A. Machanavajjhala, "No Free Lunch in Data Privacy", SIGMOD 2011

[Kifer-M PODS'12]

D. Kifer, A. Machanavajjhala, "A Rigorous and Customizable Framework for Privacy", PODS 2012

[Ding-M '12]

B. Ding, A. Machanavajjhala, "Induced Neighbors Privacy(Work in progress)", 2012

