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Outline 

 

• Recap: Pufferfish Privacy Framework                    [Kifer-M PODS’12] 

 

• Defining Privacy for Correlated Data          [Kifer-M PODS’12 & Ding-M ‘13] 

– Induced Neighbor Privacy 

 

• Relaxing differential privacy for utility 
– Crowd Blending Privacy       [Gehrke et al CRYPTO ‘12] 

– E-privacy            [M et al VLDB ‘09] 
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Recap: No Free Lunch Theorem 

 
It is not possible to guarantee any utility in addition to privacy, 
without making assumptions about  

 

• the data generating distribution  

 

• the background knowledge available  
to an adversary 
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[Kifer-Machanavajjhala SIGMOD ‘11] 
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[Dwork-Naor  JPC ‘10] 



Correlations & Differential Privacy 

• When an adversary knows that individuals in a table are 
correlated, then (s)he can learn sensitive information about 
individuals even from the output of a differentially private 
mechanism.  

 

• Example 1: Contingency tables with pre-released exact counts 

 

• Example 2: Social Networks 
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Mean : 8 
  Variance : 2/ke2 

Marginal counts 

6 

2 + Lap(1/ε) 2 + Lap(1/ε) 4 

2 + Lap(1/ε) 8 + Lap(1/ε) 10 

4 10 

D 

2 + Lap(1/ε) 

2 + Lap(1/ε) 2 + Lap(1/ε) 

             can reconstruct the table with 
high precision for large k 
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Recap: Why we need domain specific 
privacy? 

• For handling correlations 
– Prereleased marginals & Social networks              [Kifer-M SIGMOD ‘11] 

  

• Utility driven applications 
– For some applications existing privacy definitions  

do not provide sufficient utility                                  [M et al PVLDB ‘11] 

 

• Personalized privacy & aggregate secrets                 [Kifer-M PODS ‘12] 

 

Qn: How to design principled privacy definitions customized to 
such scenarios?  
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Recap: Pufferfish Framework 
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Recap: Pufferfish Semantics 

• What is being kept secret?  

 

• Who are the adversaries? 

 

• How is information disclosure bounded?  
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Recap: Sensitive Information 

• Secrets: S be a set of potentially sensitive statements 
– “individual j’s record is in the data, and j has Cancer” 

– “individual j’s record is not in the data” 

 

 

• Discriminative Pairs: Spairs is a subset of SxS. Mutually exclusive 
pairs of secrets.  
– (“Bob is in the table”, “Bob is not in the table”) 

– (“Bob has cancer”, “Bob has diabetes”) 
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Recap: Adversaries 

• An adversary can be completely characterized by his/her prior 
information about the data 
– We do not assume computational limits 

 

• Data Evolution Scenarios: set of all probability distributions that 
could have generated the data. 
– No assumptions:  All probability distributions over data instances are 

possible.  

 

– I.I.D.: Set of all f such that: P(data = {r1, r2, …, rk}) = f(r1) x f(r2) x…x f(rk) 
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Recap: Pufferfish Framework 

• Mechanism M satisfies ε-Pufferfish(S, Spairs, D), if for every  
–  w ε Range(M), 

– (si, sj) ε Spairs 

– Θ ε D, such that P(si | θ) ≠ 0, P(sj | θ) ≠ 0 

 

P(M(data) = w | si, θ)  ≤ eε P(M(data) = w | sj, θ)  
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Recap: Pufferfish Semantic Guarantee 
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Prior odds of  
si vs sj 

Posterior odds 
of si vs sj 



Recap: Pufferfish & Differential Privacy 

• Spairs:  
– “record j is in the table” vs “record j is not in the table” 

– “record j is in the table with value x” vs “record j is not in the table” 

• Data evolution:  
– For all θ = [f1, f2, f3, …, fk, π1,  π2,  …, πk ] 

– P[Data = D | θ] = Πrj not in D (1-πj) x Πrj in D πj x fj(rj)  

 

A mechanism M satisfies differential privacy  

if and only if  

it satisfies Pufferfish instantiated using Spairs and {θ}  
(as defined above) 
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Outline 

 

• Recap: Pufferfish Privacy Framework                    [Kifer-M PODS’12] 

 

• Defining Privacy for Correlated Data          [Kifer-M PODS’12 & Ding-M ‘13] 

– Current research 

 

• Relaxing differential privacy for utility 
– Crowd Blending Privacy       [Gehrke et al CRYPTO ‘12] 

– E-privacy            [M et al VLDB ‘09] 
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Reason for Privacy Breach 

18 

   can distinguish between 
every pair of these tables 

based on the output 

Space of all 
possible tables 
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Induced Neighbor Privacy 

• Differential Privacy: Neighboring tables differ in one value 
… But one or both the neighbors may not satisfy the constraints. 
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D D’ 

Differs in one 
record, but D’ 

does not satisfy 
row and column 

sums  

Move  
(add/delete a record) 



Induced Neighbor Privacy 

Induces Neighbors (Q)               [Kifer-M ’11 & Pan] 

• Pick an individual j 

• Consider 2 tables Da, Db that differ in j’s record  
– Da(j) = a, and Db(j) = b 

• Da and Db are induced neighbors if they are minimally different 
– Da and Db satisfy the constraints in Q 

– Let M = {m1, m2, …, mk} be the smallest set of moves that change Da to Db 

– There does not exist a Dc which satisfies the constraints and can be 
constructed from Da using a subset of moves from Db 
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Example 1 

a1 a2 a3 
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1 1 

1 1 

1 1 

1 1 1 

b1 

b2 

b3 

a1,b1 

a2,b2 

a3,b3 

Is Table B an Induced Neighbor of Table A 
given the row and column sums?   

Table A  

a1,b2 

a2,b2 

a3,b3 

Table B  

Ans: NO 



Example 1 
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Table B does not satisfy row and column 
sums.   a1,b2 

a2,b2 

a3,b3 

Table B  

a1 a2 a3 

1 

1 1 1 

1 1 

1 1 1 

b1 

b2 

b3 



Example 2 

a1 a2 a3 
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2 2 

2 2 

2 2 

2 2 2 

b1 

b2 

b3 

a1,b1 

a2,b2 

a3,b3 

a1,b1 

a2,b2 

a3,b3 

Is Table B an Induced Neighbor 
of Table A given the row and 
column sums?   

Table A  

Ans: No 

a1,b2 

a2,b3 

a3,b1 

a1,b2 

a2,b3 

a3,b1 

Table B  

a1 a2 a3 

2 2 

2 2 

2 2 

2 2 2 

b1 

b2 

b3 



Example 2 
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a1,b1 

a2,b2 

a3,b3 

a1,b1 

a2,b2 

a3,b3 

Table C can be 
generated from Table 
A using a subset of 
moves.  

Table A  

a1,b2 

a2,b3 

a3,b1 

a1,b2 

a2,b3 

a3,b1 

Table B  

a1,b2 

a2,b3 

a3,b1 

a1,b1 

a2,b2 

a3,b3 

Table C  

a1 a2 a3 

1 1 2 

1 1 2 

1 1 2 

2 2 2 

b1 

b2 

b3 
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Example 3 

a1,b1 

a2,b2 

a3,b3 

a1,b1 

a2,b2 

a3,b3 

Table C  and Table A 
are induced neighbors.  

Table A  

a1,b2 

a2,b3 

a3,b1 

a1,b1 

a2,b2 

a3,b3 

Table C  

a1 a2 a3 

1 1 2 

1 1 2 

1 1 2 

2 2 2 

b1 

b2 

b3 

a1 a2 a3 

2 2 

2 2 

2 2 

2 2 2 

b1 

b2 

b3 



Induced Neighbor Privacy 

For every output … 

O D2 D1 

Adversary should not be able to distinguish 
between any D1 and D2 based on any O 

 
  Pr[A(D1) = O]    
  Pr[A(D2) = O]                . 

For every pair of induced 
neighbors 

  <  ε       (ε>0) log 
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Induced Neighbors Privacy and Pufferfish 

• Given a set of count constraints Q, 

• Spairs:  
– “record j is in the table” vs “record j is not in the table” 

– “record j is in the table with value x” vs “record j is not in the table” 

• Data evolution:  
– For all θ = [f1, f2, f3, …, fk, π1,  π2,  …, πk ] 

– P[Data = D | θ] α Πrj not in D (1-πj) x Πrj in D πj x fj(rj) ,      if D satisfies Q 

– P[Data = D | θ]  = 0,        if D does not satisfy Q 

 

Conjecture: A mechanism M satisfies induced neighbors privacy  

if and only if  

it satisfies Pufferfish instantiated using Spairs and {θ}  
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Laplace Mechanism for  
Induced Neighbors Privacy 

Thm: If induced-sensitivity of the query is Sin(q), then adding Lap(λ) 
noise guarantees ε-participation privacy.  

λ = Sin(q)/ε 

 
Sin(q): Smallest number s.t. for any induced-neighbors d, d’,  

|| q(d) – q(d’) ||1  ≤  Sin(q)  
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Induced Sensitivity 

• qa1,b1: The number of records with A = a1 and B = b1? 
– Sensitivity = ? 

 

 

• qb1: The number of records with B=b1?  
– Sensitivity = ? 

 

 

• qall: All the counts in the contingency table?  
– Sensitivity = ? 
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? ? ? 2 

? ? ? 2 

? ? ? 2 

2 2 2 



Induced Sensitivity 

• qa1,b1: The number of records with A = a1 and B = b1? 
– Sensitivity = 1 

 

 

• qb1: The number of records with B=b1?  
– Sensitivity = 0 

 

 

• qall: All the counts in the contingency table?  
– Sensitivity = 6 

Lecture 16: 590.03 Fall 12 30 

? ? ? 2 

? ? ? 2 

? ? ? 2 

2 2 2 



Induced Sensitivity 

What is the sensitivity if all counts in the contingency table are 
released? 

 

• Sensitivity ≥ 6  

 

 

 

 

  Table A       Table C   Diff 
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2 2 

2 2 

2 2 

2 2 2 

1 1 2 

1 1 2 

1 1 2 

2 2 2 

+1 -1 2 

-1 +1 2 

-1 +1 2 

2 2 2 

= - 



Induced sensitivity 

• The Diff between two induced neighbors represents the moves 
– + means addition and – means deletion.  

– +1 in each cell must be offset by a -1 in the same row and another -1 in the 
same column (degree = 2) 

– Hence, if we have an edge between every +1 and -1 in the same row or 
column, we get a graph which is a collection of cycles!.  
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Induced Sensitivity 
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2 2 

2 2 

2 2 

2 2 2 

1 1 2 

1 1 2 

1 1 2 

2 2 2 

+1 -1 2 

-1 +1 2 

-1 +1 2 

2 2 2 

= - 

Table A Table C Diff 

Simple cycle can have at most min(2r, 2c) nodes 
where  r = number of rows 
 c = number of columns 



Induced Sensitivity 
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2 2 

2 2 

2 2 

2 2 2 

1 1 2 

1 1 2 

1 1 2 

2 2 2 

+1 -1 2 

-1 +2 -1 2 

-1 +1 2 

2 2 2 

= - 

Table A Table D Diff 

2 2 

2 2 

2 2 

2 2 2 

1 1 2 

1 1 2 

2 2 

2 2 2 

+1 -1 2 

-1 +1 2 

2 

2 2 2 

= - 

Table A Table E Diff 

(NOT an induced neighbor of A) 

(is an induced neighbor of A) 



Computing induced sensitivity 

2D case:  
qall : outputs all the counts in a 2-D contingency table. 
Marginals: row and column sums. 
The induced-sensitivity of qall  = min(2r, 2c).  

 

General Case: Deciding whether Sin(q) > 0 is NP-hard.  
 

Conjecture: Computing Sin(q) is hard (and complete) for the second 
level of the polynomial hierarchy.  
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Summary 

• Correlations in the data can allow adversaries to learn sensitive 
information even from a differentially private release. 

 

• Induced Neighbors Privacy helps limit this disclosure when 
correlations are due constraints that are publicly known about 
the data.  

 

• Algorithms for differential privacy can be used to ensure induced 
neighbor privacy by using the appropriate sensitivity.  
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Open Questions 

• Induced neighbor privacy for general count constraints 
– Are ways to approximate the sensitivity? 

 

• Answering queries using noisy data + exact knowledge 

 

• Privacy of social networks 
– Adversaries may use social network evolution models to infer sensitive 

information about edges in a network                           [Kifer-M SIGMOD ‘11] 

– Can correlations in a social network be generatively described? 
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Outline 

 

• Recap: Pufferfish Privacy Framework                    [Kifer-M PODS’12] 

 

• Defining Privacy for Correlated Data          [Kifer-M PODS’12 & Ding-M ‘13] 

– Current research 

 

• Relaxing differential privacy for utility 
– Crowd Blending Privacy       [Gehrke et al CRYPTO ‘12] 

– E-privacy            [M et al VLDB ‘09] 
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Recap: Pufferfish & Differential Privacy 

• Spairs:  
– “record j is in the table” vs “record j is not in the table” 

– “record j is in the table with value x” vs “record j is not in the table” 

• Data evolution:  
– For all θ = [f1, f2, f3, …, fk, π1,  π2,  …, πk ] 

– P[Data = D | θ] = Πrj not in D (1-πj) x Πrj in D πj x fj(rj)  

 

 

 

A mechanism M satisfies differential privacy if and only if  

it satisfies Pufferfish instantiated using Spairs and {θ}  
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An adversary may know an arbitrary 
distribution about each individual 



Need for relaxed notions of privacy 

• In certain applications, differentially private mechanisms do not 
provide sufficient utility 

 

• How to define privacy while guarding against restricted forms of 
attackers? 
– Need to be resistant to attacks: Previous definitions were susceptible to 

composition, minimality, and other attacks.   
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Approaches to Relax Privacy 

• Computationally Bounded Adversaries [Groce et al TCC ‘11] 

 

• Allowing certain disclosures  [Gehrke et al CRYPTO ‘12] 

 

• Considering “realistic” adversaries with bounded prior knowledge 
      [M et al VLDB ‘09] 
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Restricting the Adversary’s computational 
power 

• Consider attackers who can execute a polynomial time Turing 
machine (e.g., only use algorithms in P) 

 

• [Groce et al TCC ‘11] 
“… for queries with output in Rd (for a constant d) and a natural 
class of utilities, any computationally private mechanism can be 
converted to a statistically private mechanism that is roughly as 
efficient and achieves almost the same utility …” 
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Crowd-blending Privacy 

 

Definition: Individuals t and t’ in a database D are indistinguishable 
with respect to mechanism M if, for all outputs w   

P[M(D) = w] ≤ eε P[M(Dt,t’) = w] 

 where, Dt,t’ is the database where t is replaced with t’ 

 

Blending in a Crowd:  

 An individual t in D is said to ε-blend in a crowd of k people with 
respect to mechanism M if t is indistinguishable from k-1 other 
individuals in the data.  
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Crowd Blending Privacy 
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D 

This individual 0-blends in a crowd of size 8 

2 2 4 

2 8 10 

4 10 



Crowd Blending Privacy 
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D 

Every tuple ε-blends in a crowd of size N = 14 

2 + Lap(2/ε) 2+ Lap(2/ε) 

2+ Lap(2/ε) 8+ Lap(2/ε) 



Crowd Blending Privacy 

Definition:  
A mechanism M is (k, ε)-crowd blending private if for every 
database D and every individual t,  
 
- either, t ε-blends in a crowd of size k 
 

 - or, for all w, P(M(D) = w) ≤ eε P(M(D – {t}) = w) 
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Mechanisms 

• Release a histogram by suppressing all counts less than k 
– Satisfies (K,0)-crowd blending privacy 

 

• Release a histogram by adding Laplace noise to counts less than k 
– Satisfies (K, ε)-crowd blending privacy 
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Weaker than differential privacy 

• Adversary can infer a sensitive property of an individual. But it 
will be shared by at least k other people 
– This looks like a property of the population rather than that of the 

individual.  

 

 

• The definition does not satisfy composability. 
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Sampling + Crowd-blending => Differential Privacy 

• Let Mp be a mechanism that: 
– Constructs a sample S by picking each record in the data with probability p 

– Executes mechanism M on S. 

 

Theorem:  
If M is (k,ε)-crowd-blending private (for k > 1). Then Mp satisfies: 
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Open Questions 

• What other mechanisms satisfy Crowd-blending privacy? 

 

• Given a privacy budget, can we answer a workload of queries 
with minimum error by using the sampling + crowd-blending 
approach?  

 

• Sampling + k-anonymity => Differential Privacy 
– What other mechanisms in addition to sampling give sufficient privacy? 

 

• How big should K be?  
– K is the boundary between individual-specific and population level 

properties.  
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Next Class 

• E-privacy 
– Relaxation of differential privacy which limits the adversaries considered. 

 

 

• Application of privacy technology to US Census 
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