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Outline

* Recap: Pufferfish Privacy Framework [Kifer-M PODS’12]

* Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]
— Induced Neighbor Privacy

* Relaxing differential privacy for utility
— Crowd Blending Privacy [Gehrke et al CRYPTO “12]
— E-privacy [M et al VLDB ‘09]
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Recap: No Free Lunch Theorem

It is not possible to guarantee any utility in addition to privacy,
without making assumptions about

° the data generating distribution [Kifer-MaChanavajjhala SIGMOD '11]

* the background knowledge available [Dwork-Naor JPC ‘10]
to an adversary

Duke

Lecture 16: 590.03 Fall 12
UNIVERSITY



Correlations & Differential Privacy

When an adversary knows that individuals in a table are
correlated, then (s)he can learn sensitive information about

individuals even from the output of a differentially private
mechanism.

Example 1: Contingency tables with pre-released exact counts

Example 2: Social Networks
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Marginal counts

1 1
BE | 2+Llap(l/e)| 2+Lap(1l/e) | 4
mm | 2+Llap(1/e)| 8+Lap(l/e) | 10

4 10/
/

Mean : 8
Variance : 2/ke?

8‘: can reconstruct the table with

high precision for large k D k
Lecture 16: 590.03 Fall 12 6 u e

UNINVMERSITY



Recap: Why we need domain specific
privacy?

* For handling correlations
— Prereleased marginals & Social networks [Kifer-M SIGMOD ‘11]

e Utility driven applications

— For some applications existing privacy definitions
do not provide sufficient utility [M et al PVLDB ‘11]

* Personalized privacy & aggregate secrets [Kifer-M PODS “12]

Qn: How to design principled privacy definitions customized to
such scenarios?
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Recap: Pufferfish Framework

e Pufferfish (data): e Chef (algorithm):
e contains tetrodotoxin e Processes the fish.
(sensitive information).

e Fugu (sanitized data):
e Tasty (high utility)
e Minimal toxins

e (ertification and license

e Toxin is everywhere: (privacy definition): e Minimal leakage of
e Liver ® Rules chef must sensitive information
e Intestines follow / restrictions
e Skin / Muscles on algorithm
o Rernoving all toxin e (Guarantees output 1S
= removing fish (relatively) safe.
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Recap: Pufferfish Semantics

* What is being kept secret?
e Who are the adversaries?

e How is information disclosure bounded?
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Recap: Sensitive Information

* Secrets: S be a set of potentially sensitive statements
— “individual j’s record is in the data, and j has Cancer”
— “individual j’s record is not in the data”

* Discriminative Pairs: Spairs is a subset of SxS. Mutually exclusive
pairs of secrets.
— (“Bob is in the table”, “Bob is not in the table”)
— (“Bob has cancer”, “Bob has diabetes”)
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Recap: Adversaries

An adversary can be completely characterized by his/her prior
information about the data

— We do not assume computational limits

Data Evolution Scenarios: set of all probability distributions that
could have generated the data.

— No assumptions: All probability distributions over data instances are
possible.

— I.I.D.: Set of all f such that: P(data ={r,, r,, ..., r,}) = f(r;) x f(r,) x...x f(r\)
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Recap: Pufferfish Framework

 Mechanism M satisfies e-Pufferfish(S, Spairs, D), if for every
— W € Range(M),
— (s, 5;) € Spairs
— ©&eD,suchthatP(s, | 6) =0, P(s; | ) 20

P(M(data) =w | s, 0) <e®P(M(data)=w | s;, )
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Recap: Pufferfish Semantic Guarantee

B_E

P(Sg ‘ fm(@ata) = w@)/P(S—; | 9)

< o€
= P(s; | M(Data) =w.0)/ P(s; | 6) =

Prior odds of
S; VS S;

Posterior odds
of s; Vs s;
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Recap: Pufferfish & Differential Privacy

* Spairs:
— “record j is in the table” vs “record j is not in the table”
— “record j is in the table with value x” vs “record j is not in the table”

e Data evolution:

— Forall®=1f,f, f5, ..., f,, M, T, ..., T ]

— P[Data=D | 6] = I'I”. notin b (1-TG) X I'Irj np TG X f(r;)
A mechanism M satisfies differential privacy
if and only if

it satisfies Pufferfish instantiated using Spairs and {0}
(as defined above)
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Outline

e Recap: Pufferfish Privacy Framework [Kifer-M PODS’12]

* Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]

— Current research

* Relaxing differential privacy for utility
— Crowd Blending Privacy [Gehrke et al CRYPTO “12]
— E-privacy [M et al VLDB ‘09]
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Reason for Privacy Breach

%‘ can distinguish between
“every pair of these tables
based on the output

Space of all
possible tables
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Induced Neighbor Privacy

* Differential Privacy: Neighboring tables differ in one value
... But one or both the neighbors may not satisfy the constraints.

Move

(add/delete a record) Differs in one

" record, but D’

does not satisfy
row and column
sums
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Induced Neighbor Privacy

Induces Neighbors (Q) [Kifer-M 11 & Pan]
* Pick an individual j
* Consider 2 tables D, D, that differ in j’s record
— D,(j)=a,and D,(j)=b
* D, and D, are induced neighbors if they are minimally different

d
— D, and D, satisfy the constraints in Q

— Let M ={m1, m2, ..., mk} be the smallest set of moves that change D, to D,

— There does not exist a D, which satisfies the constraints and can be
constructed from D, using a subset of moves from D,
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Example 1

Table A 1| a2 | a3
al,bl bl 1 ;
a2,b2 b2 1 1
a3,b3 b3 1 |11
1 1 1
Table B
al,b2 Is Table B an Induced Neighbor of Table A
a2,b2 given the row and column sums?
a3,b3 Ans: NO
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Example 1

Table B _
Table B does not satisfy row and column

al,b2 sums.
a2,b2 al | a2 a3
a3,b3 bl X

b2 || 1 | 1 4

b3 1 |1

1 1 1
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Table A Table B

Example 2
al,bl al,b2
a2,b2 a2,b3
a3,b3 Is Table B an Induced Neighbor a3,b1
2Lb1 of Table A given the row and a1 b2
column sums?
a2,b2 a2,b3
a3,b3 Ans: No a3,bl
al | a2 | a3 al | a2 | a3
b1 2 2 bl 2 |2
b3 2 |2 b3 2 2
5 5 ) 2 2 2
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Example 2

Table A Table C
al,bl al,b2
a2,b2 a2,b3
a3,b3 a3,bl
al,bl al,bl
a2,b2 a2,b2
a3,b3 a3,b3
al a2 a3
Table C can be
generated from Table | bl 1 1
A using a subset of b2 1 1
moves. b3 1 1
Lecture 16: 590.03 Fall 12 g 2 2
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al,b2

a2,b3

a3,bl

al,b2

a2,b3

a3,bl
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Table A

al,bl

Example 3

a2,b2

a3,b3

al,bl

a2,b2

a3,b3

al

a2

a3

bl

b2

b3

Table C
al,b2 | taple C and Table A
a2,b3 | are induced neighbors.
a3,bl
al,bl
a2,b2
a3,b3
al a2 a3
bl 1 1
b2 1 1
b3 1 1
2 2 2




Induced Neighbor Privacy

For every pair of induced
neighbors

D, D,

Adversary should not be able to distinguish
between any D, and D, based on any O

log [MJ <eg (e>0)

Pr[A(D,) = O]
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Induced Neighbors Privacy and Pufferfish

* @Given a set of count constraints Q,
* Spairs:
— “record j is in the table” vs “record j is not in the table”
— “record j is in the table with value x” vs “record j is not in the table”

e Data evolution:
— Forall®=1f,f, f5, ..., f,, M, T, ..., T ]
— P[Data=D | 8] A I'Irj notin b (1°T5) X I'Irj np Ty X fi(r;),  if D satisfies Q
— P[Data=D | 6] =0, if D does not satisfy Q

Conjecture: A mechanism M satisfies induced neighbors privacy
if and only if
it satisfies Pufferfish instantiated using Spairs and {0}
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Laplace Mechanism for

Induced Neighbors Privacy

Thm: If induced-sensitivity of the query is S; (q), then adding Lap(A)
noise guarantees g-participation privacy.

A= Sin(Q)/E

S..(a): Smallest number s.t. for any induced-neighbors d, d’,
[l a(d)—ald’) [1, < S;,(a)
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Induced Sensitivity

.11+ The number of records with A=aland B =Db1?
— Sensitivity = ?

* (,;: The number of records with B=b1?
— Sensitivity = ?

i - ? | 2| 2

* q,,: All the counts in the contingency table? ‘
? ? ?

— Sensitivity = ? : ! ? |2

? ? ? |2
2 2

2
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Induced Sensitivity

.11+ The number of records with A=aland B =Db1?
— Sensitivity = 1

* (,;: The number of records with B=b1?
— Sensitivity =0

i - ? | 2| 2

* q,,: All the counts in the contingency table? ‘
? ? ?

— Sensitivity = 6 : ! ? |2

? ? ? |2
2 2

2
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Induced Sensitivity

What is the sensitivity if all counts in the contingency table are
released?

* Sensitivity 26

2 2 1 1 |2 1 1
2 2 1 | 1 2| [ a]+w
2 |2| 1 | 1 |2] a1 |+
2 | 2 | 2 2 | 2 | 2 2 | 2 | 2
Table A Table C Diff
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Induced sensitivity

* The Diff between two induced neighbors represents the moves

— + means addition and — means deletion.

— +1 in each cell must be offset by a -1 in the same row and another -1 in the
same column (degree = 2)

— Hence, if we have an edge between every +1 and -1 in the same row or
column, we get a graph which is a collection of cycles!.

+_

+[ = — B
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Induced Sensitivity

2 1 1
2 2 1 1
2| 1 1
2 2 2 2
Table A Table C

where

Lecture 16: 590.03 Fall 12

Simple cycle can have at most min(2r, 2c) nodes
r = number of rows
¢ = number of columns

+1 > -1

_4‘-1 <—+1 \l'

-1€- +1

2 2 2
Diff
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Induced Sensitivity

2 1 | 1 2 15 -1 2
2 2 1 1 2] 71‘-1<——+2’L >-1 |2
2 2| 1 | 1 2] ¥R AP
2 | 2 2 | 2 | 2 2 | 2 | 2
Table A Table D Diff

(NOT an induced neighbor of A)

2 1 | 1 2 15 -1 2
2 2l 1] 1 2| 7*‘-1<——+1’L 2
2 |2 2 (2| 2
2 | 2 2 | 2 | 2 2 | 2 | 2
Table A Table E Diff

(is an induced neighbor of A) D ]
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Computing induced sensitivity

2D case:
q,,: outputs all the counts in a 2-D contingency table.
Marginals: row and column sums.
The induced-sensitivity of g, = min(2r, 2c).

General Case: Deciding whether S, (q) > 0 is NP-hard.

Conjecture: Computing S, (q) is hard (and complete) for the second
level of the polynomial hierarchy.
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Summary

e Correlations in the data can allow adversaries to learn sensitive
information even from a differentially private release.

* Induced Neighbors Privacy helps limit this disclosure when
correlations are due constraints that are publicly known about

the data.

* Algorithms for differential privacy can be used to ensure induced
neighbor privacy by using the appropriate sensitivity.

. Duke
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Open Questions

* Induced neighbor privacy for general count constraints
— Are ways to approximate the sensitivity?

* Answering queries using noisy data + exact knowledge

* Privacy of social networks

— Adversaries may use social network evolution models to infer sensitive
information about edges in a network [Kifer-M SIGMOD ‘11]

— Can correlations in a social network be generatively described?
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Outline

e Recap: Pufferfish Privacy Framework [Kifer-M PODS’12]

e Defining Privacy for Correlated Data [Kifer-M PODS’12 & Ding-M ‘13]

— Current research

* Relaxing differential privacy for utility
— Crowd Blending Privacy [Gehrke et al CRYPTO “12]
— E-privacy [M et al VLDB ‘09]
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Recap: Pufferfish & Differential Privacy

* Spairs:
— “record j is in the table” vs “record j is not in the table”
— “record j is in the table with value x” vs “record j is not in the table”

e Data evolution:

— Forall®=1f,f, f5, ..., f,, M, T, ..., T ]

— P[Data =D | e] = I_Irj not in D (1-T[j) X I_II’J' inD T[J X fj(rj)

An adversary may know an arbitrary

distribution about each individual

A mechanism M satisfies differential privacy if and only if
it satisfies Pufferfish instantiated using Spairs and {0}

Lecture 16: 590.03 Fall 12 39 Duke

UNINVMERSITY



Need for relaxed notions of privacy

In certain applications, differentially private mechanisms do not
provide sufficient utility

How to define privacy while guarding against restricted forms of

attackers?

— Need to be resistant to attacks: Previous definitions were susceptible to
composition, minimality, and other attacks.

. Duke
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Approaches to Relax Privacy

e Computationally Bounded Adversaries  [Groce et al TCC ‘11]
* Allowing certain disclosures [Gehrke et al CRYPTO “12]

* Considering “realistic” adversaries with bounded prior knowledge
[M et al VLDB ‘09]
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Restricting the Adversary’s computational
power

Consider attackers who can execute a polynomial time Turing
machine (e.g., only use algorithms in P)

[Groce et al TCC ‘11]

“... for queries with output in R? (for a constant d) and a natural
class of utilities, any computationally private mechanism can be
converted to a statistically private mechanism that is roughly as
efficient and achieves almost the same utility ...”
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Crowd-blending Privacy

[Gehrke et al CRYPTO ‘12]

Definition: Individuals t and t’ in a database D are indistinguishable
with respect to mechanism M if, for all outputs w

P[M(D) = w] < e® P[M(D, ) = w]
where, D, . is the database where t is replaced with t’

Blending in a Crowd:

An individual t in D is said to &-blend in a crowd of k people with
respect to mechanism M if t is indistinguishable from k-1 other
individuals in the data.
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Crowd Blending Privacy

1
1 2
1 8

10

NNy

10

This individual 0-blends in a crowd of size 8
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Crowd Blending Privacy

1 1

2 + Lap(2/g) | 2+ Lap(2/€)
2+ Lap(2/€) | 8+ Lap(2/g)

Every tuple e-blends in a crowd of size N = 14
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Crowd Blending Privacy
Definition:
A mechanism M is (k, €)-crowd blending private if for every

database D and every individual t,

- either, t e-blends in a crowd of size k

- or, for all w, P(M(D) = w) < e P(M(D — {t}) = w)

Lecture 16: 590.03 Fall 12 46 DUke

UNINVMERSITY



Mechanisms

* Release a histogram by suppressing all counts less than k
— Satisfies (K,0)-crowd blending privacy

* Release a histogram by adding Laplace noise to counts less than k

— Satisfies (K, €)-crowd blending privacy
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Weaker than differential privacy

 Adversary can infer a sensitive property of an individual. But it
will be shared by at least k other people

— This looks like a property of the population rather than that of the
individual.

* The definition does not satisfy composability.
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Sampling + Crowd-blending => Differential Privacy

* Let M, be a mechanism that:
— Constructs a sample S by picking each record in the data with probability p
— Executes mechanism M on S.

Theorem:
If M is (k,e)-crowd-blending private (for k > 1). Then M satisfies:

Vv D,D’that dif fer in one record,
VY w € Range(M)

P(M,(D)=w) < e*P(M,(D') =w)+ &

2 —
€= In (;'::re‘E - (1—_9 + 1-— p) § = e Qk(1-p)?)
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Open Questions

What other mechanisms satisfy Crowd-blending privacy?

Given a privacy budget, can we answer a workload of queries
with minimum error by using the sampling + crowd-blending
approach?

Sampling + k-anonymity => Differential Privacy

— What other mechanisms in addition to sampling give sufficient privacy?

How big should K be?

— Kis the boundary between individual-specific and population level
properties.
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Next Class

* E-privacy
— Relaxation of differential privacy which limits the adversaries considered.

* Application of privacy technology to US Census
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