

K-Anonymity & Social Networks

CompSci 590.03 Instructor: Ashwin Machanavajjhala

(Some slides adapted from [Hay et al, SIGMOD (tutorial) 2011])

Announcements

- Project ideas are posted on the site.
 - You are welcome to send me (or talk to me about) your own ideas.

http://www.cs.duke.edu/courses/fall12/compsci590.3/project/index.html

Social Networks are ubiquitous

Data Model

Nodes

ID	Age	HIV
Alice	25	+
Bob	19	-
Carol	34	+
Dave	45	+
Ed	32	+
Fred	22	-
Greg	44	-

Edges

ID1	ID2	
Alice	Bob	
Alice	Carol	
Alice	Ed	
Bob	Carol	
Bob	Ed	
Bob	Fred	
Carol	Dave	
Carol	Fred	
Carol	Greg	
Dave	Greg	
4		S I T

Why Publish Social Networks?

- Statisticians would like to analyze properties of the network
- Example Analyses
 - Degree Distribution
 - Motif analysis
 - Community Structure / Centrality
 - Diffusion on networks
 - Routing, epidemics, information
 - Robustness/ connectivity
 - Homophily
 - Correlation/Causation

What should be protected?

- Node Re-identification: Deduce that node x in the published network corresponds to a real world person Alice.
- Edge Disclosure: Deduce that two individuals Alice and Bob are connected.
- Sensitive property inference: Deduce that Alice is HIV positive.

- Naïve Anonymization: replace node identifiers with random numbers.
- Cathy and Alice can identify themselves based on their degree.
- They can together identify Bob and Ed.
- Thus they can deduce Bob and Ed are connected by an edge.

Attacks

Matching attack: the adversary matches external information to a naively anonymized network.

unique or partial node re-identification

Ν

Local structure is highly identifying

[Hay et al PVLDB 08]

Re-identification Risk

Friendster Network ~ 4.5 million nodes

Well Protected

Uniquely Identified

Protecting against attacks

Transformed Network

- transformations obscure identifying features
- preserve global properties.

Common Problem Formulation

Given input graph G,

- Consider the set of graphs \mathcal{G} such that each G* in \mathcal{G} is reachable from G by certain graph transformations.
- Find G* in G such that it satisfies anonymity(G*, ...).
- G* minimizes the **distance(G, G*)**.

Anonymity means ...

- What do you want to protect ?
 - Node re-identification
 - Edge disclosure

- What can attacker use to break anonymity?
 - attributes
 - Degree
 - Degrees of neighbors
 - Subgraph of neighboring nodes
 - Structural knowledge beyond neighbors.

Distance means ...

- No common single measure for utility of the anonymized graph.
- Common approach: empirically compare transformed graph to original graph in terms of various network properties.
 - Degree distribution
 - Path length distribution
 - Clustering coefficient

Kinds of Transformations: Directed Alteration

Transform the network by adding or removing edges

Kinds of Transformations: Generalization

Transform graph by clustering nodes into groups.

Kinds of Transformations: Randomized Alteration

Transform graph by stochastically adding, removing, or rewiring edges .

	What is protected?	What attacker may know?	Algorithm Strategy
[Liu et al SIGMOD 08]	Node re- identification	Degree of target node	Directed Alteration
[Zhou et al, ICDE 08]	Nodes and labels	Neighborhood of target node (+ labels)	Directed Alteration
[Zou et al PVLDB 09]	Node re- identification	Any structural Property (k-isomorphism)	Directed Alteration
[Cheng et al SIGMOD 10]	Nodes and edges	Any Structural Property (k-automorphism)	Directed Alteration
[Hay et al VLDBJ 10]	Node re- identification	Any Structural Property	Generalization
[Cormode, PVLDB 08]	Edges	Attributes in a bipartite graph	Generalization
[Ying et al SDM 08]	Edges	Unclear	Randomized alteration
[Liu et al SDM 09]	Edges	Unclear	Randomized alteration
Lecture 4 : 5	90.03 Fall 12	1	, Duk

UNIVERSITY

	What is protected?	What attacker may know?	Algorithm Strategy
[Liu et al SIGMOD 08]	Node re- identification	Degree of target node	Directed Alteration
[Zhou et al, ICDE 08]	Nodes and labels	Neighborhood of target node (+ labels)	Directed Alteration
[Zou et al PVLDB 09]	Node re- identification	Any structural Property (k-isomorphism)	Directed Alteration
[Cheng et al SIGMOD 10]	Nodes and edges	Any Structural Property (k-automorphism)	Directed Alteration
[Hay et al VLDBJ 10]	Node re- identification	Any Structural Property	Generalization
[Cormode, PVLDB 08]	Edges	Attributes in a bipartite graph	Generalization
[Ying et al SDM 08]	Edges	Unclear	Randomized alteration
[Liu et al SDM 09]	Edges	Unclear	Randomized alteration
Looturo 4 - E		1	. Duk

Lecture 4 : 590.03 Fall 12

18

UNIVERSITY

Degree Anonymization

[Liu et al SIGMOD 08]

• Construct a G* such that degree distribution is k-anonymous.

Degree Anonymization

- Step 1: Construct a degree distribution that is close to original distribution, by *minimally increasing* degrees of a few nodes.
- Step 2: Construct a graph satisfying the new degree distribution *close to the original graph* by adding minimum number of edges.

Step 1: k-anonymous degree distribution

minimize
$$L_1\left(\widehat{\mathbf{d}} - \mathbf{d}\right) = \sum_i \left|\widehat{\mathbf{d}}(i) - \mathbf{d}(i)\right|$$

• Adding edges means degree only can increase.

• If
$$\widehat{\mathbf{d}}(i) = \widehat{\mathbf{d}}(j)$$
, with $i < j$, then $\widehat{\mathbf{d}}(i) = \widehat{\mathbf{d}}(i+1) = \ldots = \widehat{\mathbf{d}}(j-1) = \widehat{\mathbf{d}}(j)$.

Step 1: k-anonymous degree distribution

minimize
$$L_1\left(\widehat{\mathbf{d}} - \mathbf{d}\right) = \sum_i \left|\widehat{\mathbf{d}}(i) - \mathbf{d}(i)\right|$$

Algorithm?

• Think dynamic programming ...

Step 2: Construct a graph with this degree sequence minimize $L_1(\widehat{\mathbf{d}} - \mathbf{d}) = \sum_i |\widehat{\mathbf{d}}(i) - \mathbf{d}(i)|$

Realizable Degree Sequence

LEMMA 1. ([6]) A degree sequence **d** with $\mathbf{d}(1) \geq \ldots \geq \mathbf{d}(n)$ and $\sum_{i} \mathbf{d}(i)$ even, is realizable if and only if for every $1 \leq \ell \leq n-1$ it holds that

$$\sum_{i=1}^{\ell} \mathbf{d}(i) \leq \ell(\ell-1) + \sum_{i=\ell+1}^{n} \min\{\ell, \mathbf{d}(i)\}$$
(5)

Algorithm ConstructGraph:

- Pick node with the highest degree.
- Add d(v) edges to from v to nodes w with the highest degrees.
- Set d(w) = d(w) − 1
- If all degrees are 0 RETURN; if some degree is < 0 NOT REALIZABLE

Soundness and Completeness

- Sound: Every graph output by the algorithm satisfies the input degree distribution.
 - Proof?

- Complete: If there is a graph that satisfies the degree distribution, then the algorithms *does not* output NO.
 - Proof?
 - Think induction ...

Step 2: Construct a graph with this degree sequence

Issue 1: Degree sequence may not be realizable.

Issue 2: Realizable degree sequence may not be realizable by only adding edges to original graph G.

(See paper for fixes ...)

Protecting against other structural knowledge [Hay et al VLDBJ10]

- Let G_{naive} be the naïvely anonymized graph.
- Let Q be some structural query
 - $Q_d(x) = Degree of the node x$
 - $Q_{d+}(x)$ = Degrees of neighbors of the node x
- $\operatorname{cand}_{Q}(x) = \operatorname{set} \operatorname{of} \operatorname{nodes} y$ in the graph such that Q(x) = Q(y).

Protecting against other structural knowledge

Node anonymity:

K-Anonymity: for all x, |cand_Q(x)| >= k

Edge Disclosure: (more in later classes)

$$\frac{|\{(u,v) \mid u \in X, v \in Y\}| + |\{(u,v) \mid u, v \in X \cap Y\}|}{|X| \cdot |Y| - |X \cap Y|}$$

where $X = \operatorname{cand}_Q(x)$ and $Y = \operatorname{cand}_Q(y)$.

Ensuring cand_Q(x) >= k

- Each *supernode* has at least k nodes.
- Self loops: number of edges within a super node
- Edges: number of edges between super nodes.

Using a generalized graph

• Many graphs may be generalized to G*

$$|\mathcal{W}(\mathcal{G})| = \prod_{X \in \mathcal{V}} \begin{pmatrix} \frac{1}{2} |X| (|X| - 1) \\ d(X, X) \end{pmatrix} \prod_{X, Y \in \mathcal{V}} \begin{pmatrix} |X| |Y| \\ d(X, Y) \end{pmatrix}$$

- Run analysis on one or more samples that are consistent with generalized graph.
 - Sample: Pick any graph that are consistent with G* uniformly at random

Utility

Algorithm from Hay PVLDB 08; experiments on version of HepTh network (2.5K nodes, 4.7K edges)

Drawback of Generalization [Zou et al PVLDB 09]

Lecture 4 : 590.03 Fall 12

32

NIV

ER

K-automorphism

(non-trivial) Automorphism:
Given a graph G, there exists f: V → V such that
(u,v) is an edge in G if and only if (f(u), f(v)) is an edge in G.

K-Automorphism:
Given a graph G, there exist K-1 non-trivial automorphisms f₁, f₂,

..., f_{k-1} such that for all vertices v, $f_i(v) \neq f_i(v)$

K-automorphism

• K-Automorphism:

Given a graph G, there exist K-1 non-trivial automorphisms f_1 , f_2 , ..., f_{k-1} such that for all vertices v, $f_i(v) \neq f_j(v)$

Not even 2-automorphic

K-automorphism

• K-Automorphism:

Given a graph G, there exist K automorphisms f1, f2, ..., fk such that for all vertices v, $f_i(v) \neq f_i(v)$

This is 2-automorphic

Summary

- Social networks are more susceptible to attacks on anonymity
- Algorithms differ in
 - What is being protected (nodes / edges)
 - What structural property anonymity is based on
 - How the graph is transformed
- But, Anonymity does not guarantee privacy Next Class.

References

L. Sweeney, "K-Anonymity: a model for protecting privacy", IJUFKS 2002

- M. Hay, K. Liu, G. Miklau, J. Pei, E. Terzi, "Privacy-Aware Data Management in Information Networks", SIGMOD (tutorial) 2011
- J. Onnela et al., "Structure and tie strengths in mobile communication networks," Proceedings of the National Academy of Sciences, 2007
- Potterat, et al. *Risk network structure in the early epidemic phase of hiv transmission in colorado springs.* Sexually Transmitted Infections, 2002.

K. Liu & E. Terzi, "Towards identity anonymization on graphs", SIGMOD 2008

- M. Hay, G. Miklau, D. Jensen, D. Towsley, & P. Weis. "*Resisting structural re-identification in anonymized social networks.*" PVLDB 2008.
- B. Zhou & J. Pei. "*Preserving privacy in social networks against neighborhood attacks*." ICDE 2008.
- J. Cheng, A. W. chee Fu, & J. Liu. "*K-isomorphism: privacy preserving network publication against structural attacks.*" SIGMOD 2010.
- L. Zou, L. Chen, & M. T. Ozsu. *"k-automorphism: a general framework for privacy preserving network publication."* VLDB, 2009.

References (contd)

- L. Liu, J. Wang, J. Liu & J. Zhang. "*Privacy Preservation in Social Networks with Sensitive Edge Weights*". In SDM 2009.
- X. Ying and X. Wu. "*Randomizing social networks: a spectrum preserving approach*". In SDM 2008.
- G. Cormode, D. Srivastava, T. Yu, and Q. Zhang "Anonymizing bipartite graph data using safe groupings". In PVLDB 2008

