
K-Anonymity & Social Networks 

CompSci 590.03 
Instructor: Ashwin Machanavajjhala 

1 Lecture 4 : 590.03 Fall 12 

(Some slides adapted from [Hay et al, SIGMOD (tutorial) 2011]) 



Announcements 

• Project ideas are posted on the site.  
– You are welcome to send me (or talk to me about) your own ideas. 
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http://www.cs.duke.edu/courses/fall12/compsci590.3/project/index.html 



Social Networks are ubiquitous 
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Mobile communication 
networks  

[J. Onnela et al. PNAS 07] 

Sexual & Injection Drug 
Partners 

[Potterat et al. STI 02] 



Data Model 
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ID Age HIV 

Alice 25 + 

Bob 19 - 

Carol 34 + 

Dave 45 + 

Ed 32 + 

Fred 22 - 

Greg 44 - 

ID1 ID2 

Alice Bob 

Alice Carol 

Alice Ed 

Bob Carol 

Bob Ed 

Bob Fred 

Carol Dave 

Carol Fred 

Carol Greg 

Dave Greg 

Nodes 
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Ed 

Bob 

Fred 

Carol 

Greg 

Dave 



Why Publish Social Networks? 

• Statisticians would like to analyze properties of the network 
 

• Example Analyses 
– Degree Distribution 

– Motif analysis 

– Community Structure / Centrality 

– Diffusion on networks 

• Routing, epidemics, information 

– Robustness/ connectivity 

– Homophily 

– Correlation/Causation 
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What should be protected? 

• Node Re-identification: Deduce that node x in the published 
network corresponds to a real world person Alice.  

 

• Edge Disclosure: Deduce that two individuals Alice and Bob are 
connected.  

 

• Sensitive property inference: Deduce that Alice is HIV positive.  

Lecture 4 : 590.03 Fall 12 6 



We already know naïve anonymization 
does not work! 

 

 

 

 

 

 

• Naïve Anonymization: replace node identifiers with random numbers.  

 

• Cathy and Alice can identify themselves based on their degree.  

• They can together identify Bob and Ed. 

• Thus they can deduce Bob and Ed are connected by an edge.  
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Attacks 
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Local structure is highly identifying 
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Node Degree Neighbor’s Degree 

Well Protected 

Uniquely Identified 

[Hay et al PVLDB 08] 

Friendster Network 
~ 4.5 million nodes 



Protecting against attacks 
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Researcher 

Transformed Network 
• transformations obscure identifying 
features 
• preserve global properties. 



Common Problem Formulation 

Given input graph G, 

 

• Consider the set of graphs G such that each G* in G is reachable 

from G by certain graph transformations.  

 

• Find G* in G such that it satisfies anonymity(G*, …). 

 

• G* minimizes the distance(G, G*). 
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Anonymity means … 

• What do you want to protect ? 
– Node re-identification 

– Edge disclosure 

 

 

• What can attacker use to break anonymity? 
– attributes 

– Degree 

– Degrees of neighbors 

– Subgraph of neighboring nodes 

– Structural knowledge beyond neighbors.  
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Distance means … 

• No common single measure for utility of the anonymized graph.  

 

• Common approach: empirically compare transformed graph to 
original graph in terms of various network properties. 

 

– Degree distribution 

 

– Path length distribution 

 

– Clustering coefficient 

 

– … 

Lecture 4 : 590.03 Fall 12 13 



Kinds of Transformations: Directed Alteration 

 

 

 

 

 

 

 

Transform the network by adding or removing edges 
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Kinds of Transformations: Generalization 

 

 

 

 

 

 

 

 

Transform graph by clustering nodes into groups.  
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Kinds of Transformations: Randomized Alteration 

 

 

 

 

 

 

 

 

Transform graph by stochastically adding, removing, or rewiring 
edges .  
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What is 
protected? 

What attacker may know? Algorithm 
Strategy 

[Liu et al 
SIGMOD 08] 

Node re-
identification 

Degree of target node Directed 
Alteration 

[Zhou et al, 
ICDE 08] 

Nodes and 
labels 

Neighborhood of target 
node (+ labels) 

Directed 
Alteration 

[Zou et al 
PVLDB 09] 

Node re-
identification 

Any structural Property  
(k-isomorphism) 

Directed 
Alteration 

[Cheng et al 
SIGMOD 10] 

Nodes and 
edges 

Any Structural Property  
(k-automorphism) 

Directed 
Alteration 

[Hay et al 
VLDBJ 10] 

Node re-
identification 

Any Structural Property Generalization 

[Cormode, 
PVLDB 08] 

Edges Attributes in a bipartite 
graph 

Generalization 

[Ying et al  
SDM 08] 

Edges Unclear Randomized 
alteration 

[Liu et al  
SDM 09] 

Edges Unclear Randomized 
alteration 
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alteration 



Degree Anonymization 

• Construct a G* such that degree distribution is k-anonymous.  
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[Liu et al SIGMOD 08] 



Degree Anonymization 

• Step 1: Construct a degree distribution that is close to original 
distribution, by minimally increasing degrees of a few nodes. 

• Step 2: Construct a graph satisfying the new degree distribution 
close to the original graph by adding minimum number of edges.  
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Step 1: k-anonymous degree distribution 

  minimize 

 

 

 

 

 

 

• Adding edges means degree only can increase. 

 

•   
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5, 3, 2, 2, 1, 1, 0 



Step 1: k-anonymous degree distribution 

  minimize 

 

 

 

Algorithm? 

• Think dynamic programming … 
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Step 2: Construct a graph with this degree 
sequence 

  minimize  
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5, 3, 2, 2, 1, 1, 0 

5, 5, 2, 2, 1, 1, 1 

No graph can be 
realized with this 
degree sequence 



Realizable Degree Sequence 

 

 

 

 

 

 

Algorithm ConstructGraph:  

• Pick node with the highest degree.  

• Add d(v) edges to from v to nodes w with the highest degrees. 

• Set d(w) = d(w) – 1 

• If all degrees are 0 RETURN;  
if some degree is < 0 NOT REALIZABLE 
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Soundness and Completeness 

• Sound: Every graph output by the algorithm satisfies the input 
degree distribution. 
– Proof ?  

 

 

• Complete: If there is a graph that satisfies the degree distribution, 
then the algorithms does not output NO.  
– Proof? 

– Think induction … 
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Step 2: Construct a graph with this degree 
sequence 

Issue 1: Degree sequence may not be realizable. 

 

Issue 2: Realizable degree sequence may not be realizable by only 
adding edges to original graph G.  

 

 

(See paper for fixes …) 
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Protecting against other structural 
knowledge 

• Let Gnaive be the naïvely anonymized graph. 

 

• Let Q be some structural query 
– Qd(x) = Degree of the node x 

– Qd+(x) = Degrees of neighbors of the node x 

 

• candQ(x)  = set of nodes y in the graph such that Q(x) = Q(y). 
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[Hay et al VLDBJ10] 



Protecting against other structural 
knowledge 

Node anonymity:  

• K-Anonymity:  for all x, |candQ(x)| >= k 

 

 

 

Edge Disclosure: (more in later classes) 
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Ensuring candQ(x) >= k 

 

 

 

 

 

 

 

 

• Each supernode has at least k nodes.  

• Self loops: number of edges within a super node 

• Edges: number of edges between super nodes.  
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Using a generalized graph 

• Many graphs may be generalized to G* 

 

 

 

 

• Run analysis on one or more samples that are consistent with 
generalized graph.  
– Sample: Pick any graph that are consistent with G* uniformly at random 
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Utility 
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Drawback of Generalization 
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[Zou et al PVLDB 09] 

Lose all the structural 
information within  

super node 



K-automorphism 

• (non-trivial) Automorphism:  
Given a graph G, there exists f: V  V such that 
 (u,v) is an edge in G if and only if (f(u), f(v)) is an edge in G. 

 

 

 

• K-Automorphism: 
Given a graph G, there exist K-1 non-trivial automorphisms f1, f2, 
…, fk-1 such that for all vertices v, fi(v) ≠ fj(v)  
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K-automorphism 

• K-Automorphism: 
Given a graph G, there exist K-1 non-trivial automorphisms f1, f2, 
…, fk-1 such that for all vertices v, fi(v) ≠ fj(v)  
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Not even 2-automorphic 



K-automorphism 

• K-Automorphism: 
Given a graph G, there exist K automorphisms f1, f2, …, fk such 
that for all vertices v, fi(v) ≠ fj(v) 
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This is 2-automorphic 



Summary  

• Social networks are more susceptible to attacks on anonymity 

 

• Algorithms differ in  
– What is being protected (nodes / edges) 

– What structural property anonymity is based on 

– How the graph is transformed 

 

• But, Anonymity does not guarantee privacy – Next Class.  
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