

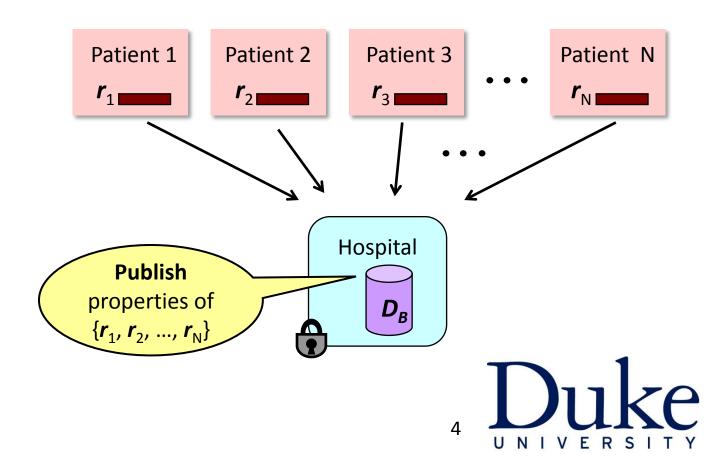
Privacy Definitions: Beyond Anonymity

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Announcements

- Some new project ideas added
- Please meet with me at least once before you finalize your project (deadline Sep 28).

Outline


- Does k-anonymity guarantee privacy?
- L-diversity
- T-closeness

Data Publishing

Publish information that:

- Discloses as much statistical information as possible.
- Preserves the privacy of the individuals contributing the data.

Privacy Breach: linking identity to sensitive info.

	Zip	Age	Nationality	Disease
	13053	28	Russian	Heart
	13068	29	American	Heart
Λ	13068	21	Japanese	Flu
Quasi-Identifier	13053	23	American	Flu
	14853	50	Indian	Cancer
\sim	14853	55	Russian	Heart
$\langle \rangle$	14850	47	American	Flu
	14850	59	American	Flu
	13053	31	American	Cancer
	13053	37	Indian	Cancer
	13068	36	Japanese	Cancer
Public Information	13068	32	American	Cancer
				1

 $_{5}$ UNLVERS

CP

k-Anonymity using Generalization

Quasi-identifiers (Q-ID) can identify individuals in the population

table T* is k-anonymous if each SELECT COUNT (*) FROM T* GROUP BY Q−ID is ≥ k

Parameter k indicates "degree" of anonymity

Zip	Age	Nationality	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cancer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer

6

NI

k-Anonymity: A popular privacy definition

Complexity

- k-Anonymity is NP-hard
- (log k) Approximation Algorithm exists

Algorithms

- Incognito (use monotonicity to prune generalization lattice)
- Mondrian (multidimensional partitioning)
- Hilbert (convert multidimensional problem into a 1d problem)

— ...

Does k-Anonymity guarantee sufficient privacy ?

Attack 1: Homogeneity

Bob has Cancer

Name	Zip	Age	Nat.
Bob	13053	35	??

Zip	Age	Nat.	Disease
130**	<30	*	Heart
1485*	>40	*	Flu
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer

Duke

9

Attack 2: Background knowledge

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

Zip	Age	Nat.	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu

10

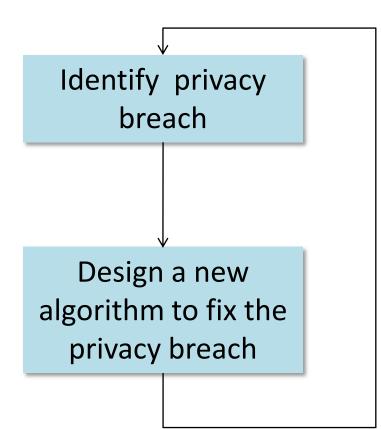
Duke UNIVERSITY

Attack 2: Background knowledge

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

Japanese have a very low incidence of Heart disease.

Umeko has Flu


Zip	Age	Nat.	Disease
130**	<30	*	Flu
130**	<30	*	Flu

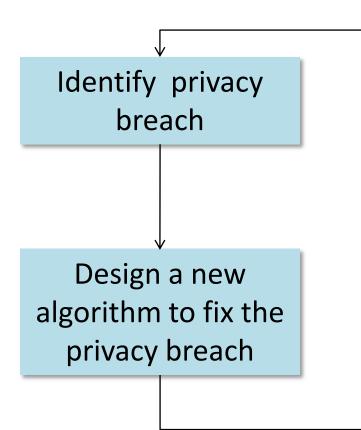
11

Duke UNIVERSITY

Q: How do we ensure the privacy of published data?

Method 1: **Breach and Patch**

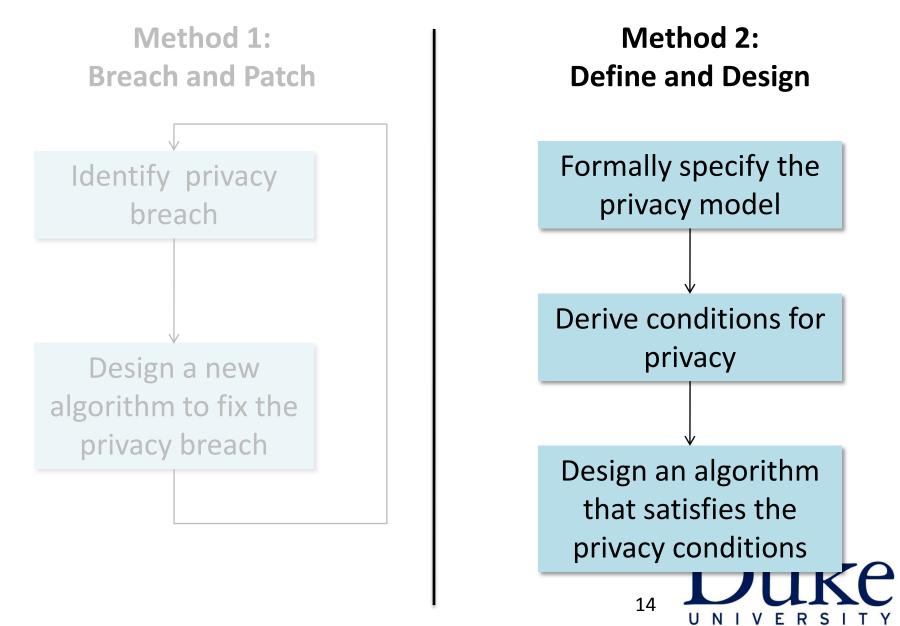
The MA Governor Breach and the AOL Privacy Breach caused by re-identifying individuals.


k-Anonymity only considers the risk of re-identification.

Adversaries with background knowledge can breach privacy even without re-identifying individuals.

12

Limitations of the Breach and Patch methodology.


Method 1: Breach and Patch

- 1. A data publisher may not be able to enumerate all the possible privacy breaches.
- 2. A data publisher does not know what other privacy breaches are possible.

Q: How do we ensure the privacy of published data?

Recall the attacks on k-Anonymity

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

Japanese have a very low incidence of Heart disease.

Umeko has Flu

Name	Zip	Age	Nat.
Bob	13053	35	??

Bob has Cancer

Zip	Age	Nat.	Disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cancer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer
130**	30-40	*	Cancer

15

Duke

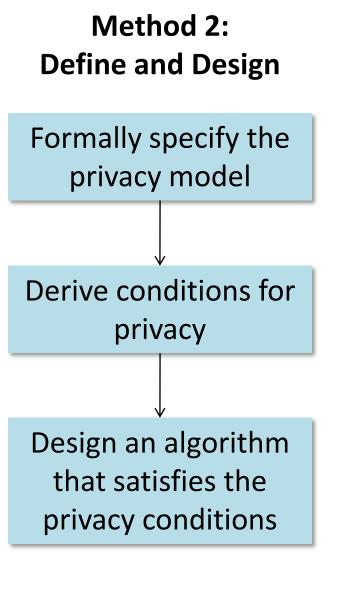
3-Diverse Table

Name	Zip	Age	Nat.
Umeko		24	Japan
emeko	13000	-4	oupun
Japa	nese hav	ve a ve	ry low
in L-E	Diversit	v Prin	ciple:
_		-	•
	/ 0		tuples ı
Q-	D valu	es has	$s \geq L dis$
va	ues of	rough	ly equa
		-	
Name	Zip	Age	Nat.
Bob	13053	35	??
	Bob	has ?	?

UNIVERSI

L-Diversity: Privacy Beyond K-Anonymity

[Machanavajjhala et al ICDE 2006]


L-Diversity Principle:

Every group of tuples with the same Q-ID values has ≥ L distinct "well represented" sensitive values.

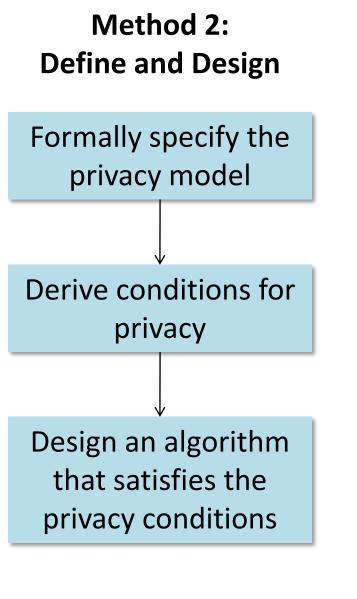
Questions:

- What kind of adversarial attacks do we guard against?
- Why is this the right definition for privacy?
 - What does the parameter L signify?

- 1. Which information is sensitive?
- 2. What does the adversary know?
- 3. How is the disclosure quantified?
- L-Diversity

L-Diverse Generalization

Privacy Specification for L-Diversity


• The link between identity and attribute value is the sensitive information.

"Does Bob have Cancer? Heart disease? Flu?" "Does Umeko have Cancer? Heart disease? Flu?"

- Adversary knows ≤ L-2 negation statements.
 "Umeko does not have Heart Disea.".
 - Data Publisher may not know exact adversari
- Privacy is breached Individual u does not have ribute value with high probabilit a specific disease s
 Pr["Bob has Cancer provided to be, dow. knowledge] > t

wledge

- 1. Which information is sensitive?
- 2. What does the adversary know?
- 3. How is the disclosure quantified?
- L-Diversity

L-Diverse Generalization

Calculating Probabilities

Set of all possible worlds

		World 1		World 2		World 3		World 4		World 5	
Sasha			Cancer		Heart		Heart		Flu		Heart
Tom			Cancer		L'		Flu		Heart		Flu
Umeko			Cancer		d		Flu		Heart		Heart
Van							Heart		Flu		Flu
Amar			orld repres				Heart		Cancer		Flu
Boris	a unique assignm			e	nt of		Cancer		Flu		Heart
Carol	diseases to indivi			id	uals		Flu		Heart		Flu
Dave			Cancer		ги		Flu		Flu		Cancer
Bob			Cancer		Cancer		Cancer		Cancer		Cancer
Charan			Cancer		Cancer		Cancer		Cancer		Cancer
Daiki			Cancer		Cancer		Cancer		Cancer		Cancer
Ellen			Cancer		Cancer		Cancer		Cancer		Cancer
							•••	21	D	u	ke

21

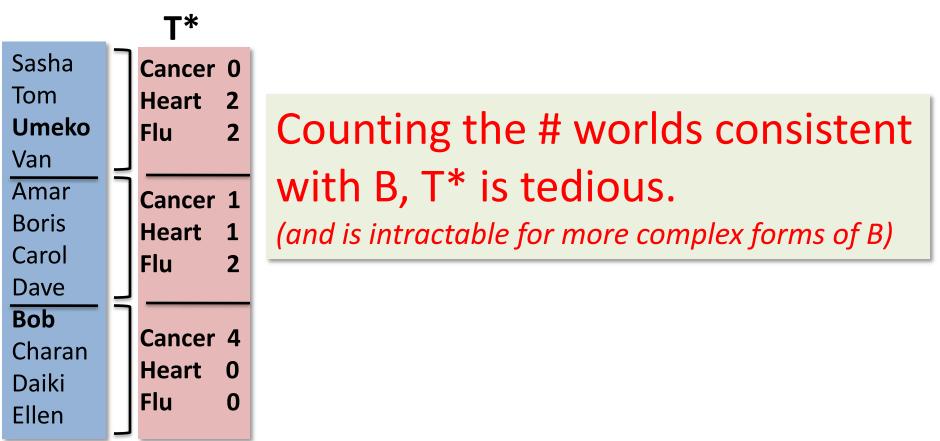
UNIVER

Calculating Probabilities

Set of all possible worlds vith T*

	T *	World 1	World 2	World 3	World 4	World 5
Sasha	Cancer 0	Cancer	Heart	Heart	Flu	Heart
Tom	Heart 2	Cancer	Heart	Flu	Heart	Flu
Umeko	Flu 2	Cancer	Flu	Flu	Heart	Heart
Van		Cancer	Flu	Heart	Flu	Flu
Amar	Cancer 1	Cancer	Cancer	Heart	Cancer	Flu
Boris	Heart 1	Cancer	Heart	Cancer	Flu	Heart
Carol	Flu 2	Cancer	Flu	Flu	Heart	Flu
Dave		Cancer	Flu	Flu	Flu	Cancer
Bob		Heart	Cancer	Cancer	Cancer	Cancer
Charan	Cancer 4	Flu	Cancer	Cancer	Cancer	Cancer
Daiki	Heart 0	Cancer	Cancer	Cancer	Cancer	Cancer
Ellen	Flu 0	Cancer	Cancer	Cancer	Cancer	Cancer
					"D	uke

22

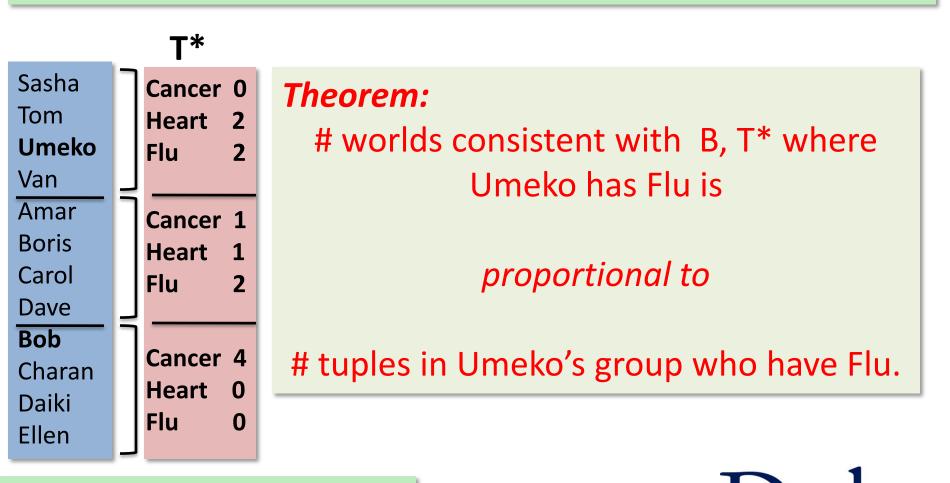

UNIVERSITY

Pr[Umeko has Flu B, T*] = # worlds consistent # worlds # worlds with B, T* # worlds consistent # worlds									
	World 2		World 3		World 4		World 5		
Sasha Tom Umeko Van Amar Boris Carol Dave Bob Charan Daiki Ellen	Cancer 0 Heart 2 Flu 2 Cancer 1 Heart 1 Flu 2 Cancer 4 Heart 0 Flu 0	C A ≠ Hoart	Heart Heart Flu Cancer Heart Heart Flu Cancer Cancer Cancer Cancer		Heart Flu Flu Heart Heart Cancer Flu Cancer Cancer Cancer Cancer		Flu Heart Heart Flu Cancer Flu Heart Flu Cancer Cancer Cancer Cancer		Heart Flu Heart Flu Flu Heart Flu Cancer Cancer Cancer Cancer
B: Omei	B: Umeko.Disease ≠ Heart ••• 23 UNIVERSITY								

Pr[Umeko has Flu| B, T*] =

worlds consistent with B, T* where Umeko has Flu

worlds consistent with B, T*


B: Umeko.Disease ≠ Heart

Pr[Umeko has Flu| B, T*] =

worlds consistent with B, T* where Umeko has Flu

worlds consistent with B, T*

25

B: Umeko.Disease ≠ Heart

Data publisher does not know the adversary's knowledge about *u*

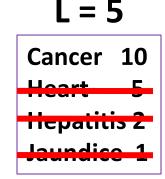
- Different adversaries have varying amounts of knowledge.
- Adversary may have different knowledge about different individuals.

Therefore, in order for privacy, check for each individual *u*, and each disea *e* s

Pr["u has disease s" | T*, adv. knowledge about u] < t

NO

And we are done ... ??

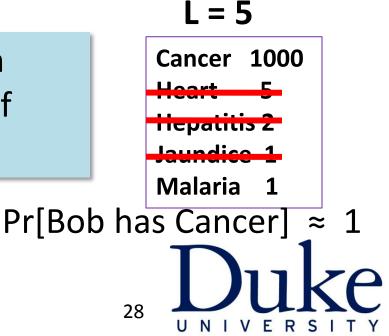


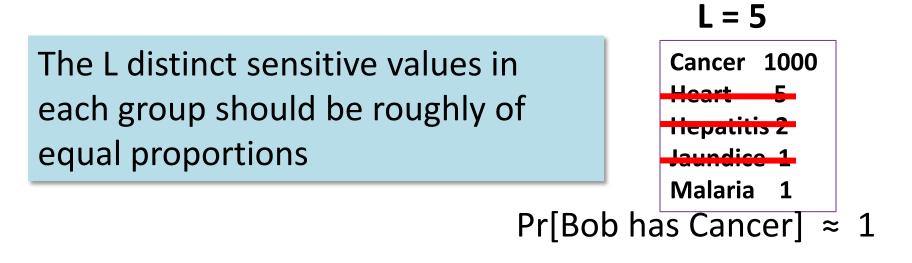
L-Diversity:

Guarding against unknown adversarial knowledge.

- Limit adversarial knowledge
 - Knows ≤ (L-2) negation statements of the form
 "Umeko does not have a Heart disease."
- Consider the worst case
 - Consider all possible conjunctions of \leq (L-2) statements

At least L sensitive values should appear in every group




Guarding against unknown adversarial knowledge

- Limit adversarial knowledge
 - Knows ≤ (L-2) negation statements of the form
 "Umeko does not have a Heart disease."
- Consider the worst case
 - Consider all possible conjunctions of \leq (L-2) statements

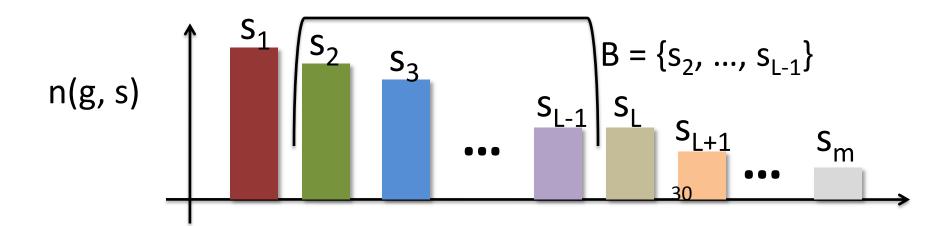
The L distinct sensitive values in each group should be roughly of equal proportions

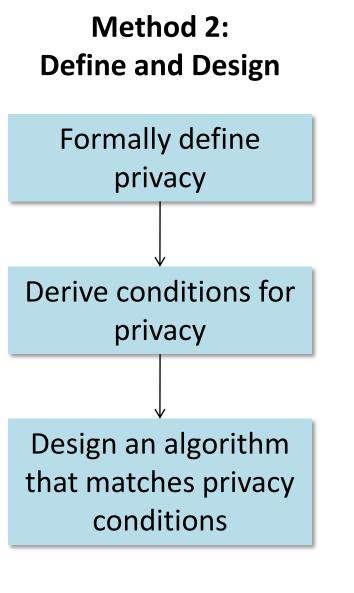
Guarding against unknown adversarial knowledge

Let *t* = 0.75. Privacy of individuals in the above group is ensured if ,

Cancer # Cancer + # Malaria < 0.75

29


Theorem:


For all groups g, for all s in S, and for all B, $|B| \le (L-2)$

$$\frac{n(g, s)}{\sum_{s' \in (S \setminus B)} n(g, s')} \leq t$$

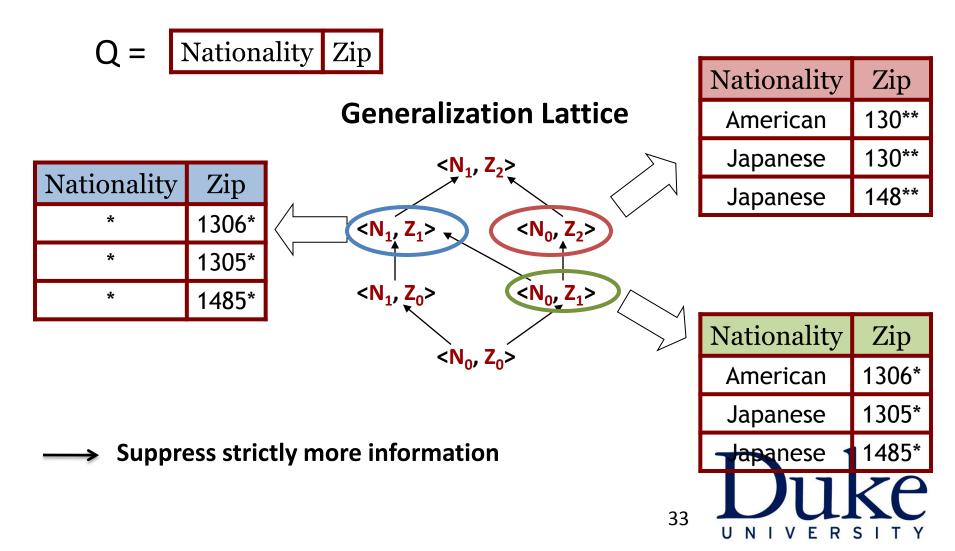
is equivalent to

$$\frac{n(g, s_1)}{n(g, s_1) + n(g, s_L) + n(g, s_{L+1}) + ... + n(g, s_m)} \leq t$$

- 1. Which information is sensitive?
- 2. What does the adversary know?
- 3. How is the disclosure quantified?
- L-Diversity

L-Diverse Generalization

Algorithms for L-Diversity


- Checking whether T* is L-Diverse is straightforward
 - In every group g,
 - Check the L-Diversity condition.

• Finding an L-Diverse table is a Lattice search problem (NPcomplete)

Algorithms for L-Diversity

• Finding an L-Diverse table is a Lattice search problem (NP-complete)

Monotonic functions allow efficient lattice searches.

Theorem: If T satisfies L-Diversity, then any further generalization T* also satisfies L-Diversity.

- Analogous monotonicity properties have been exploited to build efficient algorithms for k-Anonymity.
 - Incognito
 - Mondrian
 - Hilbert

Anatomy: Bucketization Algorithm

	non-	sensitive		
Name	Zip	Age	Sex	Disease
Bob	14850	23	Μ	Flu
Charlie	14850	24	Μ	Flu
Dave	14850	25	Μ	Lung Cancer
Ed	14850	27	Μ	Lung Cancer
Frank	14853	29	Μ	Mumps
Gloria	14850	21	F	Flu
Hannah	14850	22	F	Flu
Irma	14853	24	F	Breast Cancer
Jessica	14853	26	F	Ovarian Cancer
Karen	14853	28	F	Heart Disease

[Xiao, Tao SIGMOD 2007]

sensitive

Disease

Flu

Lung Cancer

Mumps

Flu

Lung Cancer

Flu

Breast Cancer

Flu

Heart Disease

Ovarian Cancer

NIVERS

Age Sex

М

Μ

Μ

Μ

Μ

	non-	sensit	ive	sensitive		non-sensitive				
Name	Zip Age Sex		Disease	Name	Zip	Age	Se			
		2*	М	Flu	Bob	14850	23	M		
	1485*			Lung Cancer	Charlie	14850	24	M		
*				Mumps	Dave	14850	25	M		
				Flu	Ed	14850	27	M		
				Lung Cancer	Frank	14853	29	Μ		
*				Flu	Gloria	14850	21	F		
				Breast Cancer	Hannah	14850	22	F		
	1485*	1485* 2*	F	Flu	Irma	14853	24	F		
	1405			Heart Disease	Jessica	14853	26	F		
				Ovarian Cancer	Karen	14853	28	F		

Figure 2. 5-anonymous table

Figure 3. Bucketized table 35

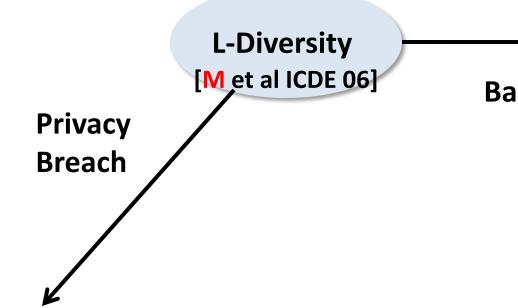
L-Diversity: Summary

• Formally specified privacy model.

L-Diversity Principle:

Each group of tuples sharing the same Q-ID must have at least L distinct sensitive values that are roughly of equal proportions.

• Permits efficient and practical anonymization algorithms.



Sensitive information

• Background knowledge captured in terms of a propositional formula over all tuples in the table.

• **Thm:** Any formula can be expressed as a conjunction of implications.

• Thm: Though checking privacy given some k implications is #P-hard, ensuring privacy against worst case k implications is tractable.

(c,k) Safety [Martin et al ICDE 07] Background Knowledge

Background Knowledge

- Adversaries may possess more complex forms of background knowledge
 - If Alice has the flu, then her husband Bob very likely also has the flu.
- In general, background knowledge can be a boolean expression over individuals and their attribute values.

$$-t_{Ed}$$
[disease] \neq flu

 $-t_{Alice}[disease] = Flu \rightarrow t_{Bob}[disease] = Flu$

 $\begin{array}{l} -\left(t_{Alice} \; [disease] = \; flu \; \forall \; t_{Alice} [disease] = \; cancer \right) \\ & \wedge \; \left(t_{Bob} \; [disease] = \; flu \; \forall \; t_{Bob} \; [disease] = \; cancer \right) \end{array}$

Background Knowledge

Theorem: Any boolean expression can be written as a conjunction of *basic implications* of the form:

 $(\wedge_{i\in[m]}A_i) \to (\vee_{j\in[n]}B_j)$

Disclosure Risk

Suppose you publish bucketization T*,

disclosure = $max_{t \in T, s \in S, \phi} P[t[S] = s | T^* \land \phi]$

where, ϕ ranges over all boolean expressions which can be expressed as a conjunction of at most k basic implications.

non-sensitive

23

24

25

27

29

21

22

24

26

28

Age Sex

Μ

Μ

М

Μ

Μ

F

F

F

F

F

Zip

14850

14850

14850

14850

14853

14850

14850

14853

14853

14853

Name

Bob

Charlie

Dave

Ed

Frank

Gloria

Hannah

Irma

Jessica

Karen

sensitive

Disease

Flu

Lung Cancer

Mumps

Flu

Lung Cancer

Flu

Breast Cancer

Flu

Heart Disease

Ovarian Cancer

Efficiently computing disclosure risk

• Disclosure is maximized when each implication is simple.

$$\wedge_{i\in[k]}(A_i\to B)$$

Max disclosure can be computed in poly time (using dynamic programming)

Sensitive information

L-Diversity [M et al ICDE 06]

Privacy Breach

t-closeness [Li et al ICDE 07]

Background Knowledge

42

(c,k) Safety

[Martin et al ICDE 07]

Ν

• Assume that the distribution of the sensitive attribute in the table is public information.

• Privacy is breached when distribution of the sensitive attribute in a QID block is "t-close" to the distribution of sensitive attribute in the whole table.

Bounding posterior probability alone may not provide privacy

- Bob:
 - 52 years old
 - Earns 11K
 - Lives in 47909
- Suppose adversary knows distribution of disease in the entire table.
 - Pr[Bob has Flu] = 1/9

Disease
gastric ulcer
gastritis
stomach cancer
gastritis
flu
bronchitis
bronchitis
pneumonia
stomach cancer

Bounding posterior probability alone may not provide privacy

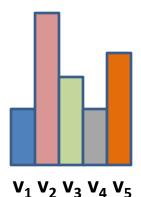
- Bob:
 - 52 years old
 - Earns 11K
 - Lives in 47909

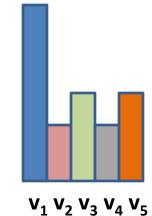
	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	stomach cancer

Table 4. A 3-diverse version of Table 3

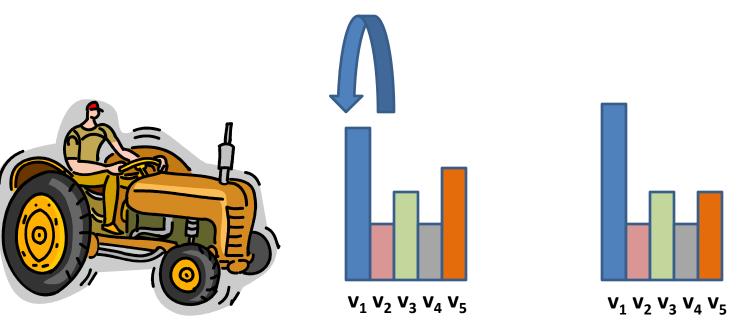
- After 3-diverse table is published.
 - Pr[Bob has Flu] = 1/3
- $1/9 \rightarrow 1/3$ is a large jump in probability

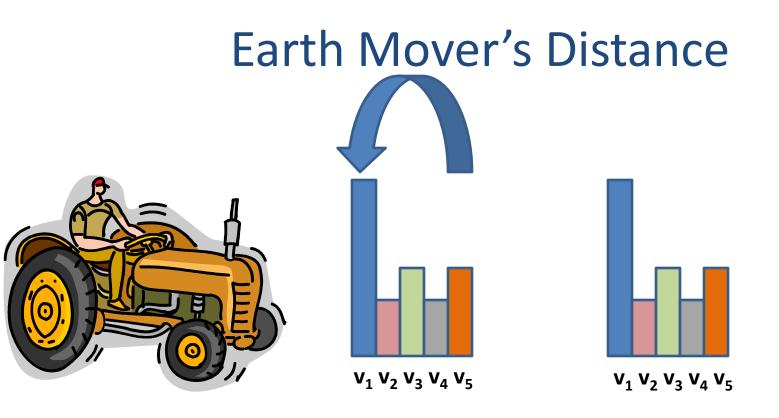
T-closeness principle


Distribution of sensitive attribute within each equivalence class should be "close" to the distribution of sensitive attribute in the entire table.


• Closeness is measured using Earth Mover's Distance.

Earth Mover's Distance





Earth Mover's Distance

Distance = Cost of moving mass from v2 to v1 (f_{21})

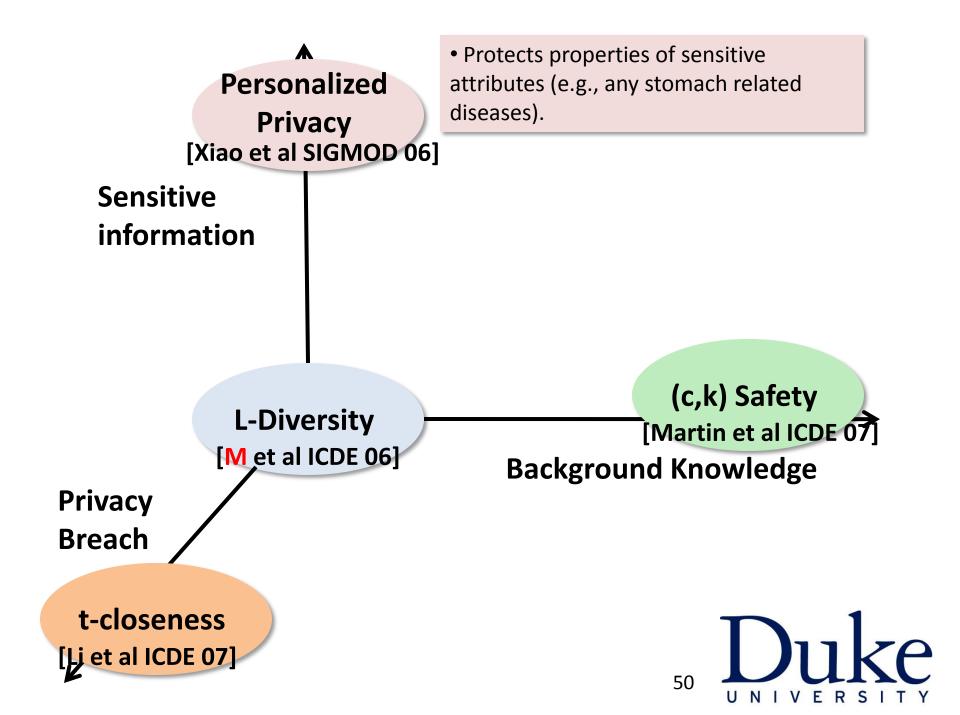
Distance = Cost of moving mass from v2 to v1 (f₂₁) + cost of moving mass from v5 to v1 (f₅₁)

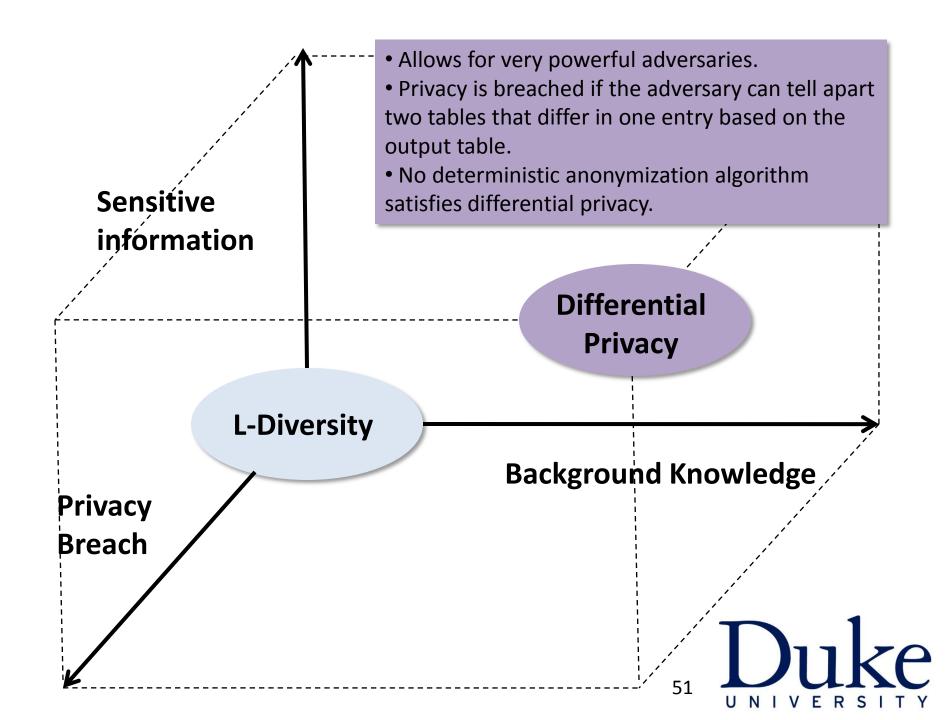
If the values are numeric, cost can depend not only on amount of "earth" moved, but also the distance it is moved $(d_{21} \text{ and } d_{51}).$

Earth Movers Distance

WORK
$$(P, Q, \mathbf{F}) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij},$$

subject to the following constraints:


$$f_{ij} \ge 0 \quad 1 \le i \le m, \ 1 \le j \le n \quad (1)$$


$$\sum_{j=1}^{n} f_{ij} \le w_{\mathbf{p}_i} \quad 1 \le i \le m \quad (2)$$

$$\sum_{i=1}^{m} f_{ij} \le w_{\mathbf{q}_j} \quad 1 \le j \le n \quad (3)$$

$$\sum_{i=1}^{m} f_{ij} \le w_{\mathbf{q}_j} \quad 1 \le j \le n \quad (3)$$
Original probability mass in the two distributions p and q which are being compared

Summary

- Adversaries can use background knowledge to learn sensitive information about individuals even from datasets that satisfy some measure of anonymity
- Many privacy definitions proposed for handling background knowledge
 - State of the art: Differential privacy (lecture 8)

• Next Class: Simulatability of algorithms

References

L. Sweeney, "K-Anonymity: a model for protecting privacy", IJUFKS 2002

- A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam, "*L-Diversity: Privacy beyond k-anonymity*", ICDE 2006
- D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, J. Halpern, "Worst Case Background Knowledge", ICDE 2007
- N. Li, T. Li, S. Venkitasubramanian, "*T-closeness: privacy beyond k-anonymity and l-diversity*", ICDE 2007
- X. Xiao & Y. Tao, "Personalized Privacy Preservation", SIGMOD 2006

