

Algorithms for Differential Privacy: Exponential & Median Mechanism

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Recap: Differential Privacy

• For every pair of tables D1 and D2, adversary should not be able to distinguish between D1 and D2.

Composability of Differential Privacy

Theorem (Composability):

If algorithms A_1 , A_2 , ..., A_k use independent randomness and each A_i satisfies ϵ_i -differential privacy, resp.

Then, outputting all the answers together satisfies differential privacy with

 $\varepsilon = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_k$

Recap: Algorithms

- No deterministic algorithm guarantees differential privacy.
- Random sampling does not guarantee differential privacy.
- Randomized response satisfies differential privacy.

$$\frac{P(D \to 0)}{P(D' \to 0)} \le e^{\varepsilon} \Leftrightarrow \frac{1}{1 + e^{\varepsilon}}$$

Recap: Laplacian Distribution

Recap: Laplace Mechanism

[Dwork et al., TCC 2006]

Thm: If **sensitivity** of the query is **S**, then the following guarantees εdifferential privacy.

 $\lambda = S/\epsilon$

Recap: Sensitivity of a Query – S(q) [Dwork et al., TCC 2006]

Smallest number s.t. for any d, d' differing in one entry,

 $|| q(d) - q(d') || \leq S(q)$

Example 2: HISTOGRAM queries

- Suppose each entry in d takes values in {c₁, c₂, ..., c_n}.
- Histogram(d) = {m₁, ..., m_n}, where m_i = (# entries in d with value c_i)
- S(q) = 2 for Histogram(d).

Changing one entry in d from c_i to c_j

- reduces the count of m_i by 1, and
- increases the count of m_i by 1.

Duke UNIVERSITY

This class

• Exponential Mechanism: when the answer is not a real number

• Median Mechanism: Answering a stream of queries

Limitations of output perturbation

- What if the answer is non-numeric?
 - "what is the most common nationality in this room": Chinese/Indian/American...
 - Other examples?
- What if the perturbed answer is not as good as the real answer?
 - "Which price would bring the most money from a set of buyers?"

Example: Items for sale \$100 iPod iPod \$100 If price is set at \$100, make a revenue of \$400 If price is set at \$401, make a revenue of \$401 \$100 Best price: \$401, Next best: \$100 \$401 Revenue at \$402 = \$0 Revenue at \$101 = \$101

11

• Consider some algorithm A (can be deterministic or probabilistic):

How to construct a differentially private version of A?

• Construct a scoring function w: Inputs x Outputs $\rightarrow R$

Examples:

- w(D, O) = c, for all $D \in Inputs$ and $O \in Outputs$.
- w(D,O) = P[A(D) = O], for all D ε Inputs and O ε Outputs.
- For good utility w(D,O) should mirror the true algorithm as well as possible.

- Construct a scoring function w: Inputs x Outputs $\rightarrow R$
- Sensitivity of w

$$\Delta_{w} = \max_{O \& D, D'} |w(D, O) - w(D, O')|$$

where D, D' differ in one tuple

• Construct a scoring function w: Inputs x Outputs $\rightarrow R$

Algorithm $\mathcal{E}_w^{\varepsilon}(D)$

• Given an input D, Randomly sample an output O from *Outputs* with probability

$$e^{\frac{\varepsilon}{2\Delta} \cdot w(D,O)}$$

$$\overline{\sum_{Q \in Outputs} e^{\frac{\varepsilon}{2\Delta} \cdot w(D,Q)}}$$

Theorem

Algorithm $\mathcal{E}_w^{\varepsilon}(D)$ satisfies ε differential privacy.

Utility of the Exponential Mechanism

 Depends on the choice of scoring function – weight given to the best output.

```
E.g.,
"What is the most common nationality?"
w(D,nationality) = # people in D having that nationality
```

```
Sensitivity of w is 1.
```

• Q: What will the output look like?

Utility of Exponential Mechanism

- Let OPT(D) = nationality with the max score
- Let $O_{OPT} = \{O \in Outputs : w(D,O) = OPT(D)\}$
- Let the exponential mechanism return an output O*

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Utility of Exponential Mechanism

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Suppose there are 4 nationalities Outputs = {Chinese, Indian, American, Greek}

Exponential mechanism will output some nationality that is shared by at least K people with probability 1-e⁻³(=0.95), where

$$K \ge OPT - 2(\log(4) + 3)/\epsilon = OPT - 6.8/\epsilon$$

Laplace versus Exponential Mechanism

- Let f be a function on tables that returns a real number.
- Define: score function w(D,O) = |f(D) O|
- Sensitivity of w = $\max_{D,D'} (|f(D) O| |f(D') O|)$ $\leq \max_{D,D'} |f(D) - f(D')| = \text{sensitivity of } f$
- Exponential mechanisms returns an output f(D) + η with probability proportional to

$$e^{\frac{\varepsilon}{2\Delta} \cdot |f(D) - f(D) - \eta|}$$
 Laplace noise with parameter $2\Delta/\varepsilon$

20

Summary of Exponential Mechanism

- Differential privacy for cases when output perturbation does not make sense.
- Idea: Make better outputs exponentially more likely; Sample from the resulting distribution.
- Every differentially private algorithm is captured by exponential mechanism.
 - By choosing the appropriate score function.

Summary of Exponential Mechanism

- Utility of the mechanism only depends on log(|Outputs|)
 - Can work well even if output space is exponential in the input

 However, sampling an output may not be computationally efficient if output space is large.

This class

• Exponential Mechanism: when the answer is not a real number

• Median Mechanism: Answering a stream of queries

Answering multiple queries

- Suppose total budget is ε.
- And each query uses δ privacy (in order to get utility)
 - Queries may be coming from different researchers
 - But they may collude ...
- Then total number of queries answered is only $k = \epsilon/\delta$.

Answering correlated queries

- q1 = q2 = q3 = ... = qk = "what fraction of the class is from China"?
- If we answer each query independently with Laplace mechanism, then we can't answer any more queries.
- But, we could have just used Laplace mechanism once, and then reused the same answer for all the remaining queries.
 - We can still answer k-1 more queries!
- Qn: can we figure out whether a query is "easy" answerable from previous queries?

Median Mechanism

- C₀ = set of all databases // world consistent with existing query answers
- Given a query q_i,
 - If q_i is a "hard" query:
 - Answer q_i using Laplace mechanism (a_i + noise)
 - Find S subset of C_i-1, such that for all D in S, $|f(D) a_i| \le \alpha/50$
 - $C_i = S$
 - If q_i is an "easy" query:
 - Compute q_i(D) for all D in C_i-1
 - Return the median of all the computed q_i(D)
 - $C_i = C_{i-1}$

Median Mechanism

- When is a query "easy"?
 - When more than half the databases D' have $|qi(D') qi(D)| < \epsilon$
 - Then the median of all the answers is close to the true answer ai = qi(D)
 - But this could leak information ...
 - Solution: Compute a noisy version of ...

$$r_i = \frac{\sum_{S \in C_{i-1}} \exp(-\epsilon^{-1} |f_i(D) - f_i(S)|)}{|C_{i-1}|}.$$

Summary

- Exponential mechanism can be used to ensure differential privacy when range of algorithm is not a real number.
- Median mechanism can be used to answer streams of queries.

• Smooth sensitivity and sampling

