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Recap: Differential Privacy

For every pair of inputs
that differ in one value

D, D,

Adversary should not be able to distinguish
between any D, and D, based on any O

log [MJ <eg (e>0)

Pr[A(D,) = O]
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For every output ...

0,



Recap: Differential Privacy

* For every pair of tables D1 and D2,
adversary should not be able to distinguish between D1 and D2.

E >Worst discrepancy

in probabilities
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Composability of Differential Privacy

Theorem (Composability):
If algorithms A, A,, ..., A, use independent
randomness and each A, satisfies g-differential

privacy, resp.

Then, outputting all the answers together
satisfies differential privacy with

E=€, +€+..+§

. Duke
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Recap: Algorithms

* No deterministic algorithm guarantees differential privacy.
 Random sampling does not guarantee differential privacy.

 Randomized response satisfies differential privacy.

P(D—»O){< R 1 < et
P(D’>0) = ° — T+e P ST1es
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Recap: Laplacian Distribution

Query q

. “ Um 0

= C
“ ) %

?
l

Privacy depends on
the A parameter

Researcher

Y T

h ( r] ) a eXp(-r] / )\) Laplace Distribution — Lap(A)

0.6

Mean: O, 0.4 /A\

Variance: 2 \2 0.2 J \ D |
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Recap: Laplace Mechanism

[Dwork et al., TCC 2006]

Thm: If sensitivity of the query is S, then the following guarantees ¢-
differential privacy.

A=S/¢g
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Recap: Sensitivity of a Query — S(q)

[Dwork et al., TCC 2006]
Smallest number s.t. for any d, d’ differing in one entry,

|1 'ald) —ald’) || < S(a)

Example 2: HISTOGRAM queries

* Suppose each entry in d takes values in {c,, c,, ..., c.}.

* Histogram(d) ={m,, ..., m _}, where m, = (# entries in d with value c,)
* S(q) =2 for Histogram(d).

Changing one entry in d from c; to c;
* reduces the count of m, by 1, and
* increases the count of m; by 1.
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This class

* Exponential Mechanism: when the answer is not a real number

 Median Mechanism: Answering a stream of queries
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Limitations of output perturbation

e What if the answer is non-numeric?

— “what is the most common nationality in this room”:
Chinese/Indian/American...

— Other examples?

 What if the perturbed answer is not as good as the real answer?

— “Which price would bring the most money from a set of buyers?”
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Example: Items for sale $

$100 /MQ@

@

;,
$100 /
/f&\\

If price is set at $100, make a revenue of $S400 @

If price is set at $401, make a revenue of S401 A
$100 /
/f&\\

Best price: S401, Next best: $100 @

Revenue at $402 = $0 5401 @
/f&\\

Revenue at $101 = S101
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Exponential Mechanism

* Consider some algorithm A (can be deterministic or probabilistic):
Inputs Outputs

] T A
- —A
m— \AA

* How to construct a differentially private version of A?
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Exponential Mechanism

» Construct a scoring function w: Inputs x Outputs = R

Examples:

w(D, O) = ¢, for all D € Inputs and O € Outputs.
w(D,0) = P[A(D) = O], for all D € Inputs and O € Outputs.

For good utility w(D,0) should mirror the true algorithm as well as
possible.
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Exponential Mechanism

» Construct a scoring function w: Inputs x Outputs = R

* Sensitivity of w

A, = O}g&%f lw(D,0) — w(D,0")]

where D, D’ differ in one tuple
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Exponential Mechanism

» Construct a scoring function w: Inputs x Outputs = R

Algorithm E%,(D)

* Given aninput D,
Randomly sample an output O from Outputs with probability

eZAW(D 0)

E
>AaW(D,Q)
ZQEOutputs e24
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Theorem

Algorithm E5,(D) satisfies € dif ferential privacy.
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Utility of the Exponential Mechanism

 Depends on the choice of scoring function — weight given to the
best output.

 Eg,
“What is the most common nationality?”
w(D,nationality) = # people in D having that nationality

Sensitivity of wis 1.

* Q: What will the output look like?
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Utility of Exponential Mechanism

* Let OPT(D) = nationality with the max score
* Let Oypr = {0 € Outputs : w(D,0) = OPT(D)}

* Let the exponential mechanism return an output O*

Theorem:

. 2A |Outputs| _t
Pr{w(D,0") < OPT(D) — —| log +t]l <e
€ |0ppr|
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Utility of Exponential Mechanism

Theorem:

2A Outputs
Pr|w(D,0") < OPT(D) — —(logl P |+ t)] < et
€ |0opr|

Suppose there are 4 nationalities
Outputs = {Chinese, Indian, American, Greek}

Exponential mechanism will output some nationality that is shared
by at least K people with probability 1-e3(=0.95), where

K> OPT - 2(log(4) + 3)/s = OPT - 6.8/¢

Lecture 7 : 590.03 Fall 12 19 Duke

UNINVMERSITY



Laplace versus Exponential Mechanism

Let f be a function on tables that returns a real number.

Define: score function w(D,0) = |[f(D) - O

Sensitivity of w = max  (|f(D) = O] - |[f(D’) = O])
< maxpy [f(D) —f(D’)| = sensitivity of f

Exponential mechanisms returns an output f(D) + n with
probability proportional to

E
eﬂ' |f(D)— f(D)-n| Laplace noise with
parameter 2A/€
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Summary of Exponential Mechanism

Differential privacy for cases when output perturbation does not
make sense.

|dea: Make better outputs exponentially more likely; Sample from
the resulting distribution.

Every differentially private algorithm is captured by exponential

mechanism.
— By choosing the appropriate score function.

Duke
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Summary of Exponential Mechanism

e Utility of the mechanism only depends on log(|Outputs|)

— Can work well even if output space is exponential in the input

* However, sampling an output may not be computationally
efficient if output space is large.
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This class

* Exponential Mechanism: when the answer is not a real number

 Median Mechanism: Answering a stream of queries
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Answering multiple queries

* Suppose total budget is €.

 And each query uses 6 privacy (in order to get utility)
— Queries may be coming from different researchers
— But they may collude ...

* Then total number of queries answered is only k = €/6.
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Answering correlated queries

gl =92 =93 =... = gk = “what fraction of the class is from China”?

If we answer each query independently with Laplace mechanism,
then we can’t answer any more queries.

But, we could have just used Laplace mechanism once, and then
reused the same answer for all the remaining queries.

— We can still answer k-1 more queries!

Qn: can we figure out whether a query is “easy” — answerable
from previous queries?
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Median Mechanism

* C,=set of all databases // world consistent with existing query answers
* Given aqueryq,
— If q,is a “hard” query:
* Answer g, using Laplace mechanism (a, + noise)
* Find S subset of C-1, such that forallDin S, |f(D)—a.| < a/50
« C=S
— If g, is an “easy” query:
¢ Compute q,(D) forallDin C-1
* Return the median of all the computed q,(D)
* G=GC,
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Median Mechanism

* Whenis a query “easy”?
— When more than half the databases D’ have |qgi(D’) — qi(D)| < ¢

— Then the median of all the answers is close to the true answer ai = qi(D)
— But this could leak information ...
— Solution: Compute a noisy version of ...

 Ysec, , exp(—€'|fi(D) = fi(9)])
- |Ci—1] |
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Summary

 Exponential mechanism can be used to ensure differential privacy
when range of algorithm is not a real number.

 Median mechanism can be used to answer streams of queries.
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Next class

* Smooth sensitivity and sampling
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