

- Snarf the huff project
 - I am assuming that most of you have already done this

- Start reading/re-reading the Huff assignment
 - I am assuming that most of you have already done this

Today

- Practice building a Huffman tree
- Develop skills for the Huff assignment

- By the end of class you should:
 - Know how to make a Huffman tree
 - Have a simple example that can help test your assignment
 - Have code for reading in data from

Side Note

- Huffman (Huff) ≠ Hough
- Hough Transform edge detection in images

3

- Step 1: Compress a file
- Step 2: Uncompress a file
- Step 3: Profit

4

HH

- Compress
 - 1. Read a file and count occurrences for each character
 - 2. Build Huffman tree from counts
 - 3. Use tree to construct a map from character -> Huffman code
 - 4. Output the compressed file using codes from step 3

- A compressed file
 - magic number info on how to decode header
 - header info on how to decode data
 - data

6

- Uncompress
 - 1. Check file is well formed (magic number)
 - 2. Read header (counts of all characters including PSEUDO_EOF)
 - 3. Build Huffman tree from header
 - 4. Use tree to construct a map from character -> Huffman code
 - 5. Output the uncompressed file using codes from step 4

- Compress
 - 1. Read a file and count occurrences for each character
 - 2. Build Huffman tree from counts
 - 3. Use tree to construct a map from character -> Huffman code
 - 4. Output the compressed file using codes from step 3

- Compress
 - 1. Read a file and count occurrences for each character
 - 2. Build Huffman tree from counts
 - 3. Use tree to construct a map from character -> Huffman code
 - 4. Output the compressed file using codes from step 3

Build Tree

- Go to the recitation webpage
- Complete the questionnaire

• We will start this together

- Compress
 - 1. Read a file and count occurrences for each character
 - 2. Build Huffman tree from counts
 - 3. Use tree to construct a map from character -> Huffman code
 - 4. Output the compressed file using codes from step 3

Compress

1. Read a file and count occurrences for each character

• "go go gophers"

• Let's write some code!

Today

- Practice building a Huffman tree
- Develop skills for the Huff assignment

- By the end of class you should:
 - Know how to make a Huffman tree
 - Have a simple example that can help test your assignment
 - Have code for reading in data from