As you arrive:

Snarf Sorter, and complete the mySort method.

Thou shalt not:

0. Use Arrays.sort.

|. Use Collections.sort.

2. Stick everything into a PriorityQueue then take it all out again.
3. Engage in other trickery.

Instead, come up with your very own sorting algorithm! Don’t worry about efficiency for now.

You should:

0.Work in a group of size >= 3 and <= 4.
|. Pick somebody in your group to be spokesperson.
2. Test your code!

Wednesday, December 5, 12



An IBM card sorter
(thanks Wikipedia!)

Wikipedia lists thirteen sorting algorithms.

| know of at least two more.

But there are only two that you need to know.

Wednesday, December 5, 12



A true story

Wednesday, December 5, 12



A true story

o

o O A~ DN




A true story

/

| 2
3 An outline: 4
5 |. Split your array in half.

2. Sort the halves. 6
/ 3. Merge them back together. 8
? 0

Implement copylLeftHalf & copyRightHalf with your group.
Make sure to write code in main to test them!

Wednesday, December 5, 12



Complexity of step |

Wednesday, December 5, 12



A true story

/

| 2
3 An outline: 4
g | Split your array in half. ¢/

2. Sort the halves. 6
/ 3. Merge them back together. 8
? 0

Implement merge with your group.
Make sure to write code in main to test it!

Wednesday, December 5, 12



Complexity of step 3

Wednesday, December 5, 12



Almost there...

An outline:
| Split your array in half. ¢/
2. Sort the halves.
3. Merge them back together. ¢/

public static int[] mergeSort(int[] input) {
// We need a base case!

// Non-base case.
int[] leftHalf = copylLeftHalf(input);
int[] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

Wednesday, December 5, 12




Almost there...

An outline:
| Split your array in half. ¢/
2. Sort the halves.
3. Merge them back together. ¢/

public static int[] mergeSort(int[] input) {
// We need a base case!

// Non-base case.
int[] leftHalf = copylLeftHalf(input);
int[] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

Implement mergeSort with your group.
Test it. Then, compute its Big-O complexity.

Wednesday, December 5, 12




How’s your constant factor?

public static int[] mergeSort(int[] input) {
// We need a base case!

//
> 1Nt

>»1nt

Non-base case.
] leftHalf = copylLeftHalf(input);

'] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

¥

Wednesday, December 5, 12




Sorting in-place
126854930




Sorting in-place
126854930

pivot
120345986




Sorting in-place
126854930

pivot
120345986

Less-thans (unsorted) Greater-thans (unsorted)

Note that this one element will never have to move again!

Wednesday, December 5, 12



Sorting in-place
126854930

pivot
120345986
Less-thans (unsorted) T Greater-thans (unsorted)

Note that this one element will never have to move again!

public static int[] quickSort(int[] input, int low, int high) {
// We need a base case!

// Non-base case.
pivot(input, low, high, 0);
// Make sure recursive calls...

Wednesday, December 5, 12




Lower bounds
Sorting is {)(n log n)

This is a lower bound: we can’t hope to sort
better, no matter the algorithm.VWhoa!

QuickSort is O(n log n) if your pivot is well-chosen.

MergeSort is O(n log n)

=>

MergeSort is O(n log n)

Caveat: can’t hope to do better with a comparison-based sort. See radix sort or counting sort for ways of sorting certain kinds of data faster.

Wednesday, December 5, 12



Finally

Be sure you've submitted your Sorting code.
Put everybody’s NetIDs at the top of the file!

http://goo.gl/cmV1

Wednesday, December 5, 12


http://goo.gl/cmVl
http://goo.gl/cmVl

