As you arrive:

Snarf Sorter, and complete the mySort method.

Thou shalt not:

0. Use Arrays.sort.

|. Use Collections.sort.

2. Stick everything into a PriorityQueue then take it all out again.
3. Engage in other trickery.

Instead, come up with your very own sorting algorithm! Don’t worry about efficiency for now.

You should:

0.Work in a group of size >= 3 and <= 4.
|. Pick somebody in your group to be spokesperson.
2. Test your code!
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An IBM card sorter
(thanks Wikipedia!)

Wikipedia lists thirteen sorting algorithms.

| know of at least two more.

But there are only two that you need to know.
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A true story
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A true story

/

| 2
3 An outline: 4
5 |. Split your array in half.

2. Sort the halves. 6
/ 3. Merge them back together. 8
? 0

Implement copylLeftHalf & copyRightHalf with your group.
Make sure to write code in main to test them!
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Complexity of step |
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A true story

/

| 2
3 An outline: 4
g | Split your array in half. ¢/

2. Sort the halves. 6
/ 3. Merge them back together. 8
? 0

Implement merge with your group.
Make sure to write code in main to test it!
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Complexity of step 3
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Almost there...

An outline:
| Split your array in half. ¢/
2. Sort the halves.
3. Merge them back together. ¢/

public static int[] mergeSort(int[] input) {
// We need a base case!

// Non-base case.
int[] leftHalf = copylLeftHalf(input);
int[] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

Wednesday, December 5, 12




Almost there...

An outline:
| Split your array in half. ¢/
2. Sort the halves.
3. Merge them back together. ¢/

public static int[] mergeSort(int[] input) {
// We need a base case!

// Non-base case.
int[] leftHalf = copylLeftHalf(input);
int[] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

Implement mergeSort with your group.
Test it. Then, compute its Big-O complexity.
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How’s your constant factor?

public static int[] mergeSort(int[] input) {
// We need a base case!

//
> 1Nt

>»1nt

Non-base case.
] leftHalf = copylLeftHalf(input);

'] rightRight = copyRightHalf(input);

// F1ll some stuff 1in...

return merge(something, somethingElse);

¥
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Sorting in-place
126854930




Sorting in-place
126854930

pivot
120345986




Sorting in-place
126854930

pivot
120345986

Less-thans (unsorted) Greater-thans (unsorted)

Note that this one element will never have to move again!
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Sorting in-place
126854930

pivot
120345986
Less-thans (unsorted) T Greater-thans (unsorted)

Note that this one element will never have to move again!

public static int[] quickSort(int[] input, int low, int high) {
// We need a base case!

// Non-base case.
pivot(input, low, high, 0);
// Make sure recursive calls...
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Lower bounds
Sorting is {)(n log n)

This is a lower bound: we can’t hope to sort
better, no matter the algorithm.VWhoa!

QuickSort is O(n log n) if your pivot is well-chosen.

MergeSort is O(n log n)

=>

MergeSort is O(n log n)

Caveat: can’t hope to do better with a comparison-based sort. See radix sort or counting sort for ways of sorting certain kinds of data faster.
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Finally

Be sure you've submitted your Sorting code.
Put everybody’s NetIDs at the top of the file!

http://goo.gl/cmV1
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