
As you arrive:
Snarf Sorter, and complete the mySort method.

Thou shalt not:
0. Use Arrays.sort.

1. Use Collections.sort.
2. Stick everything into a PriorityQueue then take it all out again.

3. Engage in other trickery.

Instead, come up with your very own sorting algorithm! Don’t worry about efficiency for now.

You should:
0. Work in a group of size >= 3 and <= 4.
1. Pick somebody in your group to be spokesperson.
2. Test your code!

Wednesday, December 5, 12

Today: Sorting

An IBM card sorter
(thanks Wikipedia!)

Wikipedia lists thirteen sorting algorithms.
I know of at least two more.

But there are only two that you need to know.

Wednesday, December 5, 12

A true story

Wednesday, December 5, 12

A true story

1
3
5
7
9

2
4
6
8
10

Wednesday, December 5, 12

A true story

1
3
5
7
9

2
4
6
8
10

An outline:
1. Split your array in half.

2. Sort the halves.
3. Merge them back together.

Implement copyLeftHalf & copyRightHalf with your group.
Make sure to write code in main to test them!

Wednesday, December 5, 12

Complexity of step 1

Wednesday, December 5, 12

A true story

1
3
5
7
9

2
4
6
8
10

An outline:
1. Split your array in half. ✔

2. Sort the halves.
3. Merge them back together.

Implement merge with your group.
Make sure to write code in main to test it!

Wednesday, December 5, 12

Complexity of step 3

Wednesday, December 5, 12

Almost there...
An outline:

1. Split your array in half. ✔
2. Sort the halves.

3. Merge them back together. ✔

	 public static int[] mergeSort(int[] input) {
	 	 // We need a base case!
	 	
	 	 // Non-base case.
	 	 int[] leftHalf = copyLeftHalf(input);
	 	 int[] rightRight = copyRightHalf(input);
	 	
	 	 // Fill some stuff in...
	 	
	 	 return merge(something, somethingElse);
	 }

Wednesday, December 5, 12

Almost there...
An outline:

1. Split your array in half. ✔
2. Sort the halves.

3. Merge them back together. ✔

	 public static int[] mergeSort(int[] input) {
	 	 // We need a base case!
	 	
	 	 // Non-base case.
	 	 int[] leftHalf = copyLeftHalf(input);
	 	 int[] rightRight = copyRightHalf(input);
	 	
	 	 // Fill some stuff in...
	 	
	 	 return merge(something, somethingElse);
	 }

Implement mergeSort with your group.
Test it. Then, compute its Big-O complexity.

Wednesday, December 5, 12

How’s your constant factor?

	 public static int[] mergeSort(int[] input) {
	 	 // We need a base case!
	 	
	 	 // Non-base case.
	 	 int[] leftHalf = copyLeftHalf(input);
	 	 int[] rightRight = copyRightHalf(input);
	 	
	 	 // Fill some stuff in...
	 	
	 	 return merge(something, somethingElse);
	 }

Wednesday, December 5, 12

Sorting in-place
1 2 6 8 5 4 9 3 0

Wednesday, December 5, 12

Sorting in-place
1 2 6 8 5 4 9 3 0

1 2 0 3 4 5 9 8 6

pivot

Wednesday, December 5, 12

Sorting in-place
1 2 6 8 5 4 9 3 0

1 2 0 3 4 5 9 8 6

pivot

Less-thans (unsorted) Greater-thans (unsorted)

Note that this one element will never have to move again!

Wednesday, December 5, 12

Sorting in-place
1 2 6 8 5 4 9 3 0

1 2 0 3 4 5 9 8 6
pivot

Less-thans (unsorted) Greater-thans (unsorted)

Note that this one element will never have to move again!

public static int[] quickSort(int[] input, int low, int high) {
	 	 // We need a base case!
	 	
	 	 // Non-base case.
 pivot(input, low, high, 0);
 // Make sure recursive calls...
}

Wednesday, December 5, 12

Lower bounds
Sorting is Ω(n log n)

This is a lower bound: we can’t hope to sort
better, no matter the algorithm. Whoa!

QuickSort is O(n log n) if your pivot is well-chosen.

Caveat: can’t hope to do better with a comparison-based sort. See radix sort or counting sort for ways of sorting certain kinds of data faster.

MergeSort is O(n log n)

MergeSort is ϴ(n log n)

=>

Wednesday, December 5, 12

Finally

http://goo.gl/cmVl

Be sure you’ve submitted your Sorting code.
Put everybody’s NetIDs at the top of the file!

Wednesday, December 5, 12

http://goo.gl/cmVl
http://goo.gl/cmVl

