
Computer Science 201 Fall 2012 Cheat Sheet #3

The complete cheat sheets from both midterms are at the back.

Sorting
Pseudocode for MergeSort:

int[] mergeSort(int[] sortme) {

if (sortme.length == 1) {

return sortme;

}

// Copy (but do not sort or otherwise re-order) the two halves.

int[] lefts = copyLeftHalf(sortme);

int[] rights = copyRightHalf(sortme);

lefts = mergeSort(lefts);

rights = mergeSort(rights);

// merge takes in two sorted arrays and merges them into a

// single sorted array.

return merge(lefts, rights);

}

Graphs
One possible implementation of a graph (An “adjacency list”):

// One node, and its neighbors.

class GraphNode {

// Label of this node.

public String myLabel;

// Adjacent nodes.

public ArrayList<GraphNode> myNeighbors;

// myNeighbors.get(0) has label myEdgeLabels.get(0).

public ArrayList<String> myEdgeLabels;

/* Constructor, getters, setters, methods etc. elided. */

}

// The graph itself.

class Graph {

public ArrayList<GraphNode> myNodes;

/* Constructor, getters, setters, methods etc. elided. */

}

Another possible implementation of a graph (an “adjacency matrix”):

class Graph {

// If myMatrix[i][j] == true, there’s an edge from node i to node j.

// NOTE THAT this does not necessarily mean there’s an edge from j to i!

public boolean[][] myMatrix;

// Instance variables for storing labels elided, as are constructors,

// methods, etc.

}



x-first search
The following code implements breadth-first search. If the Queue is replaced by a Stack, it implements
depth-first search. If the Queue is replaced by a Priority Queue, it implements informed search (informed
by whatever the ordering on the nodes is).

void BFS(GraphNode n) {

Queue<GraphNode> q = new Queue<GraphNode>();

Set<GraphNode> visited = new HashSet<GraphNode>();

q.add(n);

visited.add(n);

while (q.size() > 0) {

GraphNode n = q.poll();

// "Iterate through the neighbors." May look different depending on

// how your graph is stored.

for (GraphNode n2 : n.getNeighbors()) {

if (!visited.contains(n2)) {

q.add(n2);

visited.add(n2);

}

}

}

}


