
Graphs!

Wednesday, November 28, 12

We’ve seen...
Linked Lists
Binary (Search) Trees
Heaps
Tries

?
?

?

?

Wednesday, November 28, 12

Graphs
A set of
nodes and a
set of edges.

Edges can be
directed or
undirected.

Nodes and
edges can
have labels,
or values, or
whatever.

Wednesday, November 28, 12

Examples

Nodes are cities (or addresses, maybe).
Edges are roads. Edges have weights.

Wednesday, November 28, 12

Examples

Nodes are cities. Edges are
routes. Edges have weights.

Wednesday, November 28, 12

Examples
Suppose you’re building

a power grid.
Power Plant

My electric stove.

200W

250W

95W
75W

100W

500W

500W

150W

300W

100W

100W

50W

400W

300W

100W

200W

200W

How much
power can my

stove draw?
See the Ford-Fulkerson algorithm for details.

Wednesday, November 28, 12

Examples

An example from Facebook. From http://asawicki.info
Wednesday, November 28, 12

http://asawicki.info/
http://asawicki.info/

First question: connectivity

Wednesday, November 28, 12

Second question: representation
So, if you were going to write a Graph class,

what data would you store?

Operations you’ll need to support:
 1. Iterating through the nodes.
 2. Assigning each node a label.
 3. Getting the neighbors of a node.
 4. Assigning each edge a label.

Tell us!

http://goo.gl/p1PKN

Wednesday, November 28, 12

http://goo.gl/VtiGw
http://goo.gl/VtiGw

Back to the first question

Complete
connectedTo.

/* A node in a generic, directed, graph. */
public class GraphNode {
	 private String myLabel;
	 private ArrayList<GraphNode> myNeighbors;
	
	 public GraphNode(String l) {
	 	 myLabel = l;
	 }
	
	 boolean connectedTo(GraphNode gn) {
	 	 // Can you get to gn from this node?
	 }
}

This particular
implementation is called
an adjacency list.

Wednesday, November 28, 12

Breadth-first & Depth-first Search

Start

In what order would your code visit these nodes?

A

B

C
F

E

D G

Wednesday, November 28, 12

Breadth-first & Depth-first Search

This may remind you of a test question. Funny how that works...

Keep track of the frontier.
(And where you’ve been)

A

B

C
F

E

D G

Wednesday, November 28, 12

Breadth-first & Depth-first Search

This may remind you of a test question. Funny how that works...

Keep track of the frontier.
(And where you’ve been)

A

B

C
F

E

D G

- Add start to your frontier.
- while the frontier isn’t empty
 - Pop the first element off the frontier.
 - Process that element.
 - Add that element’s neighbors to the frontier.

(skipping those you’ve seen before)

Wednesday, November 28, 12

Breadth-first & Depth-first Search

This may remind you of a test question. Funny how that works...

Keep track of the frontier.
(And where you’ve been)

A

B

C
F

E

D G

- Add start to your frontier.
- while the frontier isn’t empty
 - Pop the first element off the frontier.
 - Process that element.
 - Add that element’s neighbors to the frontier.

(skipping those you’ve seen before)

This check is new. Why didn’t we use to have to do this?

Wednesday, November 28, 12

Breadth-first & Depth-first Search

This may remind you of a test question. Funny how that works...

Keep track of the frontier.

Demo time!

(And where you’ve been)

A

B

C
F

E

D G

- Add start to your frontier.
- while the frontier isn’t empty
 - Pop the first element off the frontier.
 - Process that element.
 - Add that element’s neighbors to the frontier.

(skipping those you’ve seen before)

This check is new. Why didn’t we use to have to do this?

Trees are directed acyclic graphs.

Wednesday, November 28, 12

Breadth-first & Depth-first Search

This may remind you of a test question. Funny how that works...

Keep track of the frontier.

Code!

A

B

C
F

E

D G

(And where you’ve been)

Wednesday, November 28, 12

North to Alaska

Nodes are cities (or addresses, maybe).
Edges are roads. Edges have weights.

Wednesday, November 28, 12

Connectivity isn’t enough.

Shortest path problem. DFS? BFS?

AK

NC

TX

CA

ND

QC

NM

843 miles

4170 miles

WA

1255 miles

2265 miles

700 miles

787 miles

90 miles

70 miles

2930 miles

1270 miles

1427 miles

1735 miles

Wednesday, November 28, 12

An aside

The job [of operating or using a computer] was actually beyond the electronic technology of the day, and, as a
result, the question of how to get and keep the physical equipment more or less in working condition became in
the early days the all-overriding concern. As a result, the topic became —primarily in the USA— prematurely
known as "computer science" —which, actually is like referring to surgery as "knife science"— and it was firmly
implanted in people's minds that computing science is about machines and their peripheral equipment.

Edsger W. Dijkstra

Inventor of or advocate for:
 - Semaphores (used in parallel computation)
 - The switchyard algorithm (used in parsing)
 - Loops.
 - Not using goto. See “Goto considered harmful.”
 - And a great many funny ways of telling people off:

It is practically impossible to teach good
programming to students that have had a
prior exposure to BASIC: as potential
programmers they are mentally mutilated
beyond hope of regeneration.

On a more philosophical note:

Wednesday, November 28, 12

Dijkstra’s Algorithm

You’ll need to assume that your edge weights are non-negative.

Expanding frontier.
+ Distance from start

+ Previous node in shortest path

AK

NC

TX

CA

ND

QC

NM

843 miles

4170 miles

WA

1255 miles

2265 miles

700 miles

787 miles

90 miles

70 miles

2930 miles

1270 miles

1427 miles

1735 miles

Wednesday, November 28, 12

Dijkstra’s Algorithm

You’ll need to assume that your edge weights are non-negative.

Expanding frontier.
+ Distance from start

+ Previous node in shortest path

AK

NC

TX

CA

ND

QC

NM

843 miles

4170 miles

WA

1255 miles

2265 miles

700 miles

787 miles

90 miles

70 miles

2930 miles

1270 miles

1427 miles

1735 miles

Big idea: everything behind the frontier is correct.
So how do we grow the frontier?

Demo time!

Wednesday, November 28, 12

