
Duke Computer Science

A Smorgasbord:

(Thanks for the picture, Wikipedia.)

(and some review)

Duke Comp Sci. is great!

front

Wednesday, October 3, 12

A review: .equals()
Asks: “Do these two objects have the same value?”

http://www.seattlepi.com/news/article/RI-man-wins-15-500-with-1-ton-pumpkin-3906593.php

public class Pumpkin {
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
}

Ron Wallace may have just set the world pumpkin record.

Wednesday, October 3, 12

A review: .equals()
Asks: “Do these two objects have the same value?”

Ron Wallace may have just set the world pumpkin record.

He would like to prove that his pumpkin has no equal.

public class Pumpkin {
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	
	 public boolean equals(Object other) {
	 	
	 	
	 	
	 	

	 	
	 }
}

.equals takes an Object as its argument for historical reasons. We’d rather it didn’t.
Wednesday, October 3, 12

A review: .equals()
Asks: “Do these two objects have the same value?”

Ron Wallace may have just set the world pumpkin record.

He would like to prove that his pumpkin has no equal.

public class Pumpkin {
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	
	 public boolean equals(Object other) {
	 	
	 	
	 	
	 	

	 	
	 }
}

.equals takes an Object as its argument for historical reasons. We’d rather it didn’t.

http://goo.gl/v9zat

Wednesday, October 3, 12

http://goo.gl/v9zat
http://goo.gl/v9zat

A review: .equals()
Asks: “Do these two objects have the same value?”

Ron Wallace may have just set the world pumpkin record.

He would like to prove that his pumpkin has no equal.

.equals takes an Object as its argument for historical reasons. We’d rather it didn’t.

public class Pumpkin {
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	
	 public boolean equals(Object other) {
	 	 if (other == null) {
	 	 	 return false;
	 	 }
	 	 if (other.getClass() != getClass()) {
	 	 	 return false;
	 	 }
	 	 Pumpkin p = (Pumpkin)other;
	 	 return myMass == p.myMass &&
 myGrowerName.equals(p.myGrowerName);
	 }
}

Common case: check all of the instance variables.

Wednesday, October 3, 12

A review: .compareTo()
Asks: “Which one of these objects is ‘bigger’ than the other?”

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

Now he wants to prove that his pumpkin is the best!

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals hidden for space's sake.
	 public int compareTo(Pumpkin other) {
	 	

	 }
}

http://goo.gl/gKr0X

Note “implements Comparable<Pumpkin>”. This is why we don’t have to send .compareTo an Object; we wish .equals did this...
Wednesday, October 3, 12

http://goo.gl/gKr0X
http://goo.gl/gKr0X

A review: .compareTo()
Asks: “Which one of these objects is ‘bigger’ than the other?”

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

Now he wants to prove that his pumpkin is the best!

Note “implements Comparable<Pumpkin>”. This is why we don’t have to send .compareTo an Object; we wish .equals did this...

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals hidden for space's sake.
	 public int compareTo(Pumpkin other) {
	 if (myMass < other.myMass) {
	 	 return -1;
	 }
	 if (myMass > other.myMass) {
	 	 return 1;
	 }
	 return myGrowerName.compareTo(
 other.myGrowerName);
	 }
}

Now we can use Arrays.sort on arrays of Pumpkins, Collections.sort on
Lists of Pumpkins, and use Pumpkins in TreeSet and TreeMap.

Wednesday, October 3, 12

A review: .compareTo()
Asks: “Which one of these objects is ‘bigger’ than the other?”

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

Note “implements Comparable<Pumpkin>”. This is why we don’t have to send .compareTo an Object; we wish .equals did this...

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals hidden for space's sake.
	 public int compareTo(Pumpkin other) {
	 if (myMass < other.myMass) {
	 	 return -1;
	 }
	 if (myMass > other.myMass) {
	 	 return 1;
	 }
	 return myGrowerName.compareTo(
 other.myGrowerName);
	 }
}

Now we can use Arrays.sort on arrays of Pumpkins, Collections.sort on
Lists of Pumpkins, and use Pumpkins in TreeSet and TreeMap.

Wednesday, October 3, 12

A review: .hashCode()
Less obvious. Turns a your object into an integer.

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

(Nothing to do with breakfast foods)
Now he wants to hash his pumpkin.

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals & compareTo hidden for space's sake.
	 public int hashCode() {
	

	
	 }
}

Wednesday, October 3, 12

A review: .hashCode()
Less obvious. Turns a your object into an integer.

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

(Nothing to do with breakfast foods)
Now he wants to hash his pumpkin.

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals & compareTo hidden for space's sake.
	 public int hashCode() {
	

	
	 }
}

But wait!

Wednesday, October 3, 12

http://goo.gl/gKr0X
http://goo.gl/gKr0X

A review: .hashCode()
Less obvious. Turns a your object into an integer.

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

(Nothing to do with breakfast foods)
Now he wants to hash his pumpkin.

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals & compareTo hidden for space's sake.
	 public int hashCode() {
	
	 }
}

hashCode rules:
1. Depends only on the instance variables.
2. If a.equals(b), then a.hashCode() == b.hashCode().
3. If !a.equals(b), then a.hashCode might == b.hashCode().

4. All built-in Object types have a .hashCode. It’s a handy building
block for your own hashCodes.
5. If !a.equals(b), a.hashCode() should try not to == b.hashCode()

Very important.

HashSet & HashMap will be faster if it isn’t. More details later!
Wednesday, October 3, 12

A review: .hashCode()
Less obvious. Turns a your object into an integer.

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

(Nothing to do with breakfast foods)
Now he wants to hash his pumpkin.

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals & compareTo hidden for space's sake.
	 public int hashCode() {
	

	
	 }
}

http://goo.gl/xQbJJ

Wednesday, October 3, 12

http://goo.gl/xQbJJ
http://goo.gl/xQbJJ

A review: .hashCode()
Less obvious. Turns a your object into an integer.

Ron Wallace may have just set the world pumpkin record.

He has proven that his pumpkin has no equal. ✔

He has proven that his pumpkin is the best! ✔

(Nothing to do with breakfast foods)
Now he wants to hash his pumpkin.

public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	
	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 }
	 // equals & compareTo hidden for space's sake.
	 public int hashCode() {
	 	 return myGrowerName.hashCode() +
 new Integer(myMass).hashCode();
	 }
}
hashCode rules:
1. Depends only on the instance variables.
2. If a.equals(b), then a.hashCode() == b.hashCode().
3. If !a.equals(b), then a.hashCode might == b.hashCode().

4. All built-in Object types have a .hashCode. It’s a handy building
block for your own hashCodes.
5. If !a.equals(b), a.hashCode() should try not to == b.hashCode()

Rely on rule #4

Wednesday, October 3, 12

In sum:
public class Pumpkin implements Comparable<Pumpkin>{
	 private int myMass;
	 private String myGrowerName;
	 private int myHashCode;

	 public Pumpkin(int mass, String grower) {
	 	 myMass = mass;
	 	 myGrowerName = grower;
	 	 computeHashCode();
	 }

	 public boolean equals(Object other) {
	 	 if (other == null) {
	 	 	 return false;
	 	 }
	 	 if (other.getClass() != getClass()) {
	 	 	 return false;
	 	 }
	 	 Pumpkin p = (Pumpkin)other;
	 	 return myMass == p.myMass &&
 myGrowerName.equals(p.myGrowerName);
	 }

	 public int compareTo(Pumpkin other) {
	 	 if (myMass < other.myMass) {
	 	 	 return -1;
	 	 }
	 	 if (myMass > other.myMass) {
	 	 	 return 1;
	 	 }
	 	 return myGrowerName.compareTo(
	 	 	 	 other.myGrowerName);
	 }

	 private void computeHashCode() {
	 	 myHashCode = myGrowerName.hashCode() +
 new Integer(myMass).hashCode();
	 }

	 public int hashCode() {
	 	 return myHashCode;
	 }
}

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

public class LinkedListDemo {
	 public static void main(String[] args) {
	 	 LinkedListNode node = new LinkedListNode("great!", null);
	 	 node = new LinkedListNode("is", node);
	 	 node = new LinkedListNode("Sci.", node);
	 	 node = new LinkedListNode("Comp.", node);
	 	 node = new LinkedListNode("Duke", node);
	 }
}

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

public class LinkedListDemo {
	 public static void main(String[] args) {
	 	 LinkedListNode node = new LinkedListNode("great!", null);
	 	 node = new LinkedListNode("is", node);
	 	 node = new LinkedListNode("Sci.", node);
	 	 node = new LinkedListNode("Comp.", node);
	 	 node = new LinkedListNode("Duke", node);
	 }
}

Recursive data!

...suggests recursive algorithms.

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

Base Case

Deal with this node

Deal with the rest of the list

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

Deal with this node

Deal with the rest of the list

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

Deal with the rest of the list

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

Wednesday, October 3, 12

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

http://goo.gl/6q1eI

Snarf LinkDemo

Wednesday, October 3, 12

http://goo.gl/6q1eI
http://goo.gl/6q1eI

Duke Comp. Sci. is great!

node

public class LinkedListNode {
	 private String myString;
	 private LinkedListNode myNext;
	 public LinkedListNode(String s,
 LinkedListNode n) {
	 	 myString = s;
	 	 myNext = n;
	 }
	 public String getString() {
	 	 return myString;
	 }
	 public LinkedListNode getNext() {
	 	 return myNext;
	 }
 }

	 void printList(LinkedListNode node) {
	 	 if (node == null) {
	 	 	 return;
	 	 }
	 	
	 	 System.out.println(node.getString());
	 	 printList(node.getNext());
	 }

http://goo.gl/6q1eI

Snarf LinkDemo

http://goo.gl/GNDhP

Wednesday, October 3, 12

http://goo.gl/6q1eI
http://goo.gl/6q1eI
http://goo.gl/GNDhP
http://goo.gl/GNDhP

Duke Computer Science

What values can we put in this square?

Wednesday, October 3, 12

Duke Computer Science

Snarf Sudoku
Implement recursiveHelper (in Sudoku)

http://goo.gl/A70fL

Wednesday, October 3, 12

http://goo.gl/A70fL
http://goo.gl/A70fL

