Trees hﬂ

® Snarf the code for today’s class
® and start looking at the code

Today hﬂ

¢ Definition of a binary tree

e and lingo (e.g. “root”, “leaf”, “binary search
tree™)

® Write recursive code to manipulate binary trees
® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious
TreeSet

Binary Iree

SO, (7
— el e
&2 =
oh " ng P,
v “ ot i o
null null » .
A 6) A 9
ol e gt W g
’ 4 » 4
| il null r

IntTreeNode root = null;

public class IntTreeNode {
public int value;
public IntTreeNode left; // holds smaller tree nodes
public IntTreeNode right; // holds larger tree nodes

public IntTreeNode(int val) { value = val; }

Binary Tree: Terms

Root: the starting w

point of the tree
& —
NodeSisthe)\ " Trght__ 4 B of the
“parent” of node 2. 2 \ Py treeis a]so a
Node 2 node 5's ‘\) Aot A l)\p;.— tree. Thisisa
“lefechild” 4 left "] “subtree
null’ null 74 | rooted at node
RO (6) £ i
Leaf: a node that foft == S right
has no child nodes 4 Internal ‘“
null node: a node 55
that has 1 or
2 children

More terms M

Depth: distance
of a node from

the root e | .
—{ 5 & oot
™ hoh= b\x depthis1 ,
=X ___Syu
et " rght A7 S~ Depth2
13 4 loft ~——"" ry ,
null null et 3 — |
i) A 9 ¢ Depth3
feft " right Jeft \V/\Q
null null null null
Height:
maximum depth
of the tree

Binary Search Tree ﬁi

® Each node has a value

® Nodes with values less than their
parent are in the left subtree

® Nodes with values greater than
their parent are in the right subtree

SO

values values
<7 >7

® Which is a binary search tree?

S } o 5 2
P — . - o iz
{ 2 - 1 \ -
- -« A 7) h P 7
> 4 by o » “ . — -
st il » A il rull » -
g o o2)
ok - o] - o = b
v 4 » “ ’ - » -
null ol nalt rull ol el nul
{20)
o o — sl
null -
-~
o — rgte
» .
null A 9
R " g
» -
null A

Height Balanced hﬂ

® A tree is height-balanced if

® left and right subtrees are both height balanced

® the heights of left and right subtrees do not differ
by more than 1

® This matters hugely for efficiency

® Which is NOT height balanced?
Ao B g D

/\-\ b % A
7 N /(/\§> - ° W ,—l N,
i - “rxﬂ‘ ! p U A, w, i A
S OAD & T & - >
./ 7\ % "_) i5 ')_ \

I 7~ »

'\ J ;_4.‘

|

Today hﬁ[

® Definition of a binary tree
® and lingo (e.g. “root”, “leaf”, “binary search tree”)
® Write recursive code to manipulate binary trees
® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious

TreeSet

Recursion and Trees

® They go together like PB&dJ!
node

Q

® Pseudocode

® Check the current node left right
i subtree subtree
® check the left subtree

® check the right subtree

Your code

® example:

public int computeTreeThing(TreeNode current) {
if (we are at the base case) {
return obviousValue;
} else {
int 1Result = computeTreeThing(current.left);
int rResult = computeTreeThing(current.right);
int result = //combine those values;
return result;

Coding exercise

public int computeTreeThing(TreeNode current) {
if (we are at the base case) {
return obviousValue;
} else {
int lResult = computeTreeThing(current.left);
int rResult = computeTreeThing(current.right);
int result = //combine those values;
return result;

® Code (as many as you can)countNodes,
containsNode, and findMax

® If you get stuck on countNodes raise your hand

® If you finish early, modify your functions to work
with a BinaryTree

® Submit your code via ambient

Today hﬂ

135

® Definition of a binary tree

® and lingo (e.g. “root”, “leaf”, “binary search tree”)
® Write recursive code to manipulate binary trees

® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes
binary search trees so powerfully efficient -
including understanding the runtime of the
mysterious TreeSet

ol

14

® What is the height of a. height-balanced

A. O()
B. O(NIn())
C. O(In(N\))

P4
D. O(N=) *We can prove this with
induction

In a Binary Search Tree m

® What is the maximum time to:
® insert a node?

® Find a node?

« o left “neh(i

(,/ \ *-_- } -

‘\ 2 . /
loft b/ nght Al
¥ 4 loft ~—" right_
null null L P
EUDN Ko\
eft right eft ~——" nght
v 4 " a

null pull null

O(Tree height) ™

15

Printing a Tree In Order m

® Print Left subtree

® Print Root

® Print Right subtree

of
- S ‘
2) =
LI &)
» “ oy w
el nus » A
6) 9
public void printInOrder(IntTreeNode current){ - e - o |
if(current == null) il oll ol e

return;
printInCrder{current.left);
System.cut.print(current.value + " ");
printInCrder{current.right);

}

16

Today

Ll

17

® Definition of a binary tree

e and lingo (e.g. “root”, “leaf”, “binary search tree")
® Write recursive code to manipulate binary trees

® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious
TreeSet

® Complete the worksheet off from the calendar
page for today’s class!

