Trees hﬂ

® Snarf the code for today’s class
® and start looking at the code

Today hﬂ

¢ Definition of a binary tree

e and lingo (e.g. “root”, “leaf”, “binary search
tree™)

® Write recursive code to manipulate binary trees
® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious
TreeSet
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IntTreeNode root = null;

public class IntTreeNode {
public int value;
public IntTreeNode left; // holds smaller tree nodes
public IntTreeNode right; // holds larger tree nodes

public IntTreeNode(int val) { value = val; }
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More terms M
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Binary Search Tree ﬁi

® Each node has a value

® Nodes with values less than their
parent are in the left subtree

® Nodes with values greater than
their parent are in the right subtree
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® Which is a binary search tree?
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Height Balanced hﬂ

® A tree is height-balanced if

® left and right subtrees are both height balanced

® the heights of left and right subtrees do not differ
by more than 1

® This matters hugely for efficiency

® Which is NOT height balanced?
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Today hﬁ[

® Definition of a binary tree
® and lingo (e.g. “root”, “leaf”, “binary search tree”)
® Write recursive code to manipulate binary trees
® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious

TreeSet

Recursion and Trees

® They go together like PB&dJ!
node

Q

® Pseudocode

® Check the current node left right
i subtree subtree
® check the left subtree

® check the right subtree




Your code

® example:

public int computeTreeThing(TreeNode current) {
if (we are at the base case) {
return obviousValue;
} else {
int 1Result = computeTreeThing(current.left);
int rResult = computeTreeThing(current.right);
int result = //combine those values;
return result;

Coding exercise

public int computeTreeThing(TreeNode current) {
if (we are at the base case) {
return obviousValue;
} else {
int lResult = computeTreeThing(current.left);
int rResult = computeTreeThing(current.right);
int result = //combine those values;
return result;

® Code (as many as you can)countNodes,
containsNode, and findMax

® If you get stuck on countNodes raise your hand

® If you finish early, modify your functions to work
with a BinaryTree

® Submit your code via ambient




Today hﬂ

135

® Definition of a binary tree

® and lingo (e.g. “root”, “leaf”, “binary search tree”)
® Write recursive code to manipulate binary trees

® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes
binary search trees so powerfully efficient -
including understanding the runtime of the
mysterious TreeSet
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® What is the height of a. height-balanced

A. O()
B. O(NIn())
C. O(In(N\))

P4
D. O(N=) *We can prove this with
induction




In a Binary Search Tree m

® What is the maximum time to:
® insert a node?

® Find a node?
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Printing a Tree In Order m

® Print Left subtree

® Print Root

® Print Right subtree

of
- S ‘
2 ) =
LI &)
» “ oy w
el nus » A
6 ) 9
public void printInOrder(IntTreeNode current){ - e - o |
if(current == null) il oll ol e

return;
printInCrder{current.left);
System.cut.print(current.value + " ");
printInCrder{current.right);

}
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Today
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® Definition of a binary tree

e and lingo (e.g. “root”, “leaf”, “binary search tree")
® Write recursive code to manipulate binary trees

® This will be easy and fun!
® By the end of class

® You will be able to articulate what makes binary
search trees so powerfully efficient - including
understanding the runtime of the mysterious
TreeSet

® Complete the worksheet off from the calendar
page for today’s class!




