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public class Robot {
private String myName;
public Robot(String name) {
myName = name;

¥

public String getName() {
return myName;

¥
¥

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

h

public void raiseArms() {
// ...arm control code.

¥
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Subclass Superclass

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

¥

public void raiseArms() {
// ...arm control code.

h

Robot r = new Robot("RZ2DZ2");

System.out.println("r is named " + r.getName());
r.raiseArms(); // DOES NOT WORK

TwoArmedRobot prZ2 = new TwoArmedRobot("pr2");
System.out.println("prZ2 is named " + pr2.getName());
prZ.raiseArms();
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public class A {
// Code.

¥

Dispatch

C
C.

c = new CQ;
doSomethingCool();

public class B extends A {

// Code.
}

public class C extends B {

// Code!
¥

Check if class C has the method (or instance variable).

If not, c
If not, c
If not, c

NeC
NnecC

NeC

¢ if class B
< if class A

< if Object

nas it.
nas it.

nas It.
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public class A {
public 1int x;
public void doSomethingOk() {
// Code!

h
¥

public class B extends A {
public void doSomethingCool() {
// Code!

¥

Dispatch

Capital letter “Oh”

; http://goo.qgl/f0OVXqg

public class C extends B {
public void doSomethingAwesome() {
// Code!

¥
¥

Check if | have the method or variable.
Then (recursively) check my superclass.
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Overloading

public class D {
public void doSomething() {
System.out.println(“D”);

¥
¥

public class E extends D{
public void doSomething() {
System.out.println(“E”);

¥
¥

Check if | have the method or variable.
Then (recursively) check my superclass.

Tuesday, October 30, 12




public class Robot {
private String myName;
public Robot(String name) {
myName = name;

}

public String getName() {
return myName;

h

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

}

public void raiseArms() {
// ...arm control code.

}
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task performance human-robot interaction

public abstract class Robot {
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public abstract void eStop();

on caslers for movemen
locking feet for stability

public class TwoArmedRobot extends Robot {

public TwoArmedRobot(String name) {
super(name);

¥

public void raiseArms() {
// ...arm control code.

}

public void eStop() {
// STOP.

Abstract methods work like interfaces.

Tuesday, October 30, 12



When do | use...

Interfaces are very common:
“These classes can all do the same stuff.”

Data inheritance is pretty common:
“These classes need some of the same instance variables.”

Code inheritance is less common:
“These classes share part of an implementation.”

You can implement multiple interfaces; you can only extend one class.

To look into, if youre curious: the “protected” and “final” keywords.
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Automatic Boggle

You may assume a set dictionary of words.

We want an algorithm for finding every word on the board.




Tries!

s ‘e’ a prefix?




Tries!

s ‘e’ a prefix?

s ‘ey’ a prefix!




Tries!

s ‘e’ a prefix?
s ‘ey’ a prefix!

s ‘eyr’ a prefix?




Tries!

s ‘e’ a prefix?
s ‘ey’ a prefix!?
s ‘eyr’ a prefix?

s ‘eyri’ a prefix!

(and then we're stuck)
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“Peter piper picked a peck of pickled peppers”

“Xavier has x-rayed his xylophone”

“Four score and seven years ago”

“Ulysses usually uses union u-boats”
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