Inheritance

Tuesday, October 30, 12

TurtleBot

A problem with interfaces

human-robot interaction

task performance

Q—— human presence detection

7 with 360° sonar and
o
/.\ /.\

front camera
force sensing and force //

o\ user interface through tk
control at each joint

behavior-based intelligence

| navigator on the arm an
| display on the face

AN

naturally compliant throu
springs and force sensin
each joint. Can feel bum
into people or objects

vision-guided movement
visual object identification

g Q—— lrain objects and tasks b

direct movement of the ¢

on casters for movemen
locking feet for stability

Baxter

The orange, it burns...it burns!

Tuesday, October 30, 12

TurtleBot

A problem with interfaces

PR2

human-robot interaction

task performance

Q—— human presence detection

7 with 360° sonar and
o
/.\ /.\

front camera
force sensing and force //

o\ user interface through tk
control at each joint

behavior-based intelligence

| navigator on the arm an
| display on the face

AN

naturally compliant throu
springs and force sensin
each joint. Can feel bum
into people or objects

vision-guided movement
visual object identification

g Q—— lrain objects and tasks b

direct movement of the ¢

on casters for movemen
locking feet for stability

http://goo.gl/pNaVn o

Tuesday, October 30, 12

http://goo.gl/pNaVn
http://goo.gl/pNaVn

task performance human-robot interaction

public class Robot { | e
1 1 b 0\ user interface through th
private String myName ; — - B
public Robot(String name) { \ : |
myName = name; '

O——— human presence detection

with 360° sonar and

¥

naturally compliant throu
springs and force sensin
each joint. Can feel bum
into people or objects

vision-guided movement

public String getName() { ot e
return myName;

. Q——— train objects and tasks b

direct movement of the ¢

on caslers for movemen
locking feet for stability

¥
¥

Tuesday, October 30, 12

public class Robot {
private String myName;
public Robot(String name) {
myName = name;

¥

public String getName() {
return myName;

¥
¥

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

h

public void raiseArms() {
// ...arm control code.

¥

Tuesday, October 30, 12

Subclass Superclass

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

¥

public void raiseArms() {
// ...arm control code.

h

Robot r = new Robot("RZ2DZ2");

System.out.println("r is named " + r.getName());
r.raiseArms(); // DOES NOT WORK

TwoArmedRobot prZ2 = new TwoArmedRobot("pr2");
System.out.println("prZ2 is named " + pr2.getName());
prZ.raiseArms();

Tuesday, October 30, 12

public class A {
// Code.

¥

Dispatch

C
C.

c = new CQ;
doSomethingCool();

public class B extends A {

// Code.
}

public class C extends B {

// Code!
¥

Check if class C has the method (or instance variable).

If not, c
If not, c
If not, c

NeC
NnecC

NeC

¢ if class B
< if class A

< if Object

nas it.
nas it.

nas It.

Tuesday, October 30, 12

public class A {
public 1int x;
public void doSomethingOk() {
// Code!

h
¥

public class B extends A {
public void doSomethingCool() {
// Code!

¥

Dispatch

Capital letter “Oh”

; http://goo.qgl/f0OVXqg

public class C extends B {
public void doSomethingAwesome() {
// Code!

¥
¥

Check if | have the method or variable.
Then (recursively) check my superclass.

Tuesday, October 30, 12

http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq
http://goo.gl/fOVXq

Overloading

public class D {
public void doSomething() {
System.out.println(“D”);

¥
¥

public class E extends D{
public void doSomething() {
System.out.println(“E”);

¥
¥

Check if | have the method or variable.
Then (recursively) check my superclass.

Tuesday, October 30, 12

public class Robot {
private String myName;
public Robot(String name) {
myName = name;

}

public String getName() {
return myName;

h

public class TwoArmedRobot extends Robot {
public TwoArmedRobot(String name) {
super(name);

}

public void raiseArms() {
// ...arm control code.

}

human-robot interaction

O——— human presence detection
with 360° sonar and
front camera

o\’ user interface through th

/ | navigator on the arm an¢
force sensing and force /i . | display on the face
control at each join "
N
ANN D
\ / \)

naturally compliant throu
springs and force sensin
each joint. Can feel bum
into people or objects

vision-guided movement
visual object identification

. Q——— train objects and tasks b

direct movement of the ¢

on caslers for movemen
locking feet for stability

Tuesday, October 30, 12

task performance human-robot interaction

public abstract class Robot {

O—— human presence detection

private S.tr.-i-ng myName; behavior-based in tcllgt,tx\o - ,l’ﬁiorrj(;‘*a,d
public Robot(String name) { Q\\\Tﬁﬁﬁﬁﬁm

force sen ngdndl rce

| display on the face
ontrol at each joint |
“

myName = name;

}

public String getName() {

b €
) N\
return myName; L
naturally compliant throu
springs and force sensin
each joint. Can feel bum
into people or objects

} vision-guided movement
visual object identification

. Q——— train objects and tasks b
direct movement of the ¢

public abstract void eStop();

on caslers for movemen
locking feet for stability

public class TwoArmedRobot extends Robot {

public TwoArmedRobot(String name) {
super(name);

¥

public void raiseArms() {
// ...arm control code.

}

public void eStop() {
// STOP.

Abstract methods work like interfaces.

Tuesday, October 30, 12

When do | use...

Interfaces are very common:
“These classes can all do the same stuff.”

Data inheritance is pretty common:
“These classes need some of the same instance variables.”

Code inheritance is less common:
“These classes share part of an implementation.”

You can implement multiple interfaces; you can only extend one class.

To look into, if youre curious: the “protected” and “final” keywords.

Tuesday, October 30, 12

Boggle!

Tuesday, October 30, 12

Words words words

Words words words

Words words words

Words words words

Words words words

Automatic Boggle

You may assume a set dictionary of words.

We want an algorithm for finding every word on the board.

Tries!

s ‘e’ a prefix?

Tries!

s ‘e’ a prefix?

s ‘ey’ a prefix!

Tries!

s ‘e’ a prefix?
s ‘ey’ a prefix!

s ‘eyr’ a prefix?

Tries!

s ‘e’ a prefix?
s ‘ey’ a prefix!?
s ‘eyr’ a prefix?

s ‘eyri’ a prefix!

(and then we're stuck)

J9Joys BaS a3 Aq s||oys ©as s||9s 3Ys,,

Tuesday, October 30, 12

O

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

D000
@W@Q

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

o
S Qﬂ@%@@&u
D@

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

;9J0ys BaS U3 Ag S||2Ys B3S S||9S Y,

Tuesday, October 30, 12

“Peter piper picked a peck of pickled peppers”

“Xavier has x-rayed his xylophone”

“Four score and seven years ago”

“Ulysses usually uses union u-boats”

Tuesday, October 30, 12

