
Objects Recap

Duke Computer Science

Pointers!

and

AKA: Why is .equals different than ==?

Find a partner for the day!

Monday, September 10, 12

Syntax

And Sales Tax, and Income Tax

public class Robot {

}
Instance variables and methods go inside the curly

braces (so that they “belong to” the class)

Monday, September 10, 12

Syntax

And robotax. Sort of.

public class Robot {

}
Instance variables and methods go inside the curly

braces (so that they “belong to” the class)

By yourself:
• Add the code that defines three instance variables: one int,
one String, and one of whatever type you’d like. Name them
whatever you want.

With a partner:
• Compare your results. Do you agree on the syntax?

Monday, September 10, 12

Syntax

And robotax. Sort of.

Private things can only be used inside the class:
that is, between the curly braces

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;

}

private TYPE NAME;
(In general. Note that there’s no value yet!)

To let code outside Robot use
these data, we need getter methods.

Monday, September 10, 12

Syntax

And robotax. Sort of.

Private things can only be used inside the class:
that is, between the curly braces

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;

} To let code outside Robot use
these data, we need getter methods.

By yourself: add a getter for one of your instance
variables. Then compare with your partner.

private TYPE NAME;
(In general. Note that there’s no value yet!)

Monday, September 10, 12

Syntax

Maybe “robotix”?

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public String getName() {
	 	 return name;
	 }
}

Note “public”

public return type name(parameters)

By convention, getters are named
getWhatever().

Because getSpeed() is
inside Robot, it can use

the (private) speed
instance variable

Monday, September 10, 12

Syntax

Maybe “robotix”?

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public String getName() {
	 	 return name;
	 }
}

Note “public”

public return type name(parameters)

By convention, getters are named
getWhatever().

By yourself: add a setter for one of your instance
variables. Then compare with your partner.

Because getSpeed() is
inside Robot, it can use

the (private) speed
instance variable

Monday, September 10, 12

Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public void setSpeed(double newSpeed) {
	 	 speed = newSpeed;
	 }
}

public return type name(argtype1 argname1, argtype2 argname2, ...)

void means “doesn’t return
anything”

Setters change the internal state of an object.

Monday, September 10, 12

Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public void setSpeed(double newSpeed) {
	 	 speed = newSpeed;
	 }
}

public return type name(argtype1 argname1, argtype2 argname2, ...)

void means “doesn’t return
anything”

Setters change the internal state of an object.

By yourself: write a constructor for your class. Then
compare with your partner.

Monday, September 10, 12

Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w, String n, double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
}

public ClassName(parameters)

Constructors fill in instance variables.

Monday, September 10, 12

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w,
 String n,
 double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
	
	 double getSpeed() {
	 	 return speed;
	 }
	
	 void setSpeed(double s) {
	 	 speed = s;
	 }
}

 pr2.setSpeed(10.0);
	 	

 System.out.println(
 "pr2 goes " +
 pr2.getSpeed());

	

 Robot pr2 = new Robot(8,
 "PR2",
 0.5);
	 	

	 	

In the usual way: match lefts to rights.
And then: put the rights into an order that will run. And figure out what it prints.

Monday, September 10, 12

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w,
 String n,
 double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
	
	 double getSpeed() {
	 	 return speed;
	 }
	
	 void setSpeed(double s) {
	 	 speed = s;
	 }
}

 pr2.setSpeed(10.0);
	 	

 System.out.println(
 "pr2 goes " +
 pr2.getSpeed());

	

 Robot pr2 = new Robot(8,
 "PR2",
 0.5);
	 	

	 	

In the usual way: match lefts to rights.
And then: put the rights into an order that will run. And figure out what it prints.

Monday, September 10, 12

willowgarage.com
Monday, September 10, 12

Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science
Monday, September 10, 12

Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science

x

5

Primitives take up very
little memory (each)

8
“PR2”

0.5
11

“foo”
...

Objects (potentially) take
up lots of memory (each).
(So do arrays!)

Monday, September 10, 12

Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science

x

5

Primitives take up very
little memory (each)

8
“PR2”

0.5
11

“foo”
...

Objects (potentially) take
up lots of memory (each).

pr2

A pointer. (also memory-cheap)

Every object variable is
storing a pointer.

Monday, September 10, 12

Pointers!
	 	 int x = 5;
 int y = x;
 int z = x;

Duke Computer Science

x
5

y
5

z
5

y = 8;

x
?

y
?

z
?

In the usual way: fill the boxes in. Yes, it’s really easy.

Monday, September 10, 12

Pointers!
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Robot a = pr2;
Robot b = pr2;

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: finish the picture.

Monday, September 10, 12

Pointers!
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Robot a = pr2;
Robot b = pr2;

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: finish the picture.

a

b

Objects (potentially) take
up lots of memory (each).

So you want to be able to
not copy them if you
don’t have to!

Monday, September 10, 12

Pointers!
System.out.println("PR2 speed: " + pr2.getSpeed());

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: what prints?

a

b

a.setSpeed(10);
System.out.println("PR2 speed: " + pr2.getSpeed());

Monday, September 10, 12

.equals

Duke Computer Science

Snarf Strings

Before you run it, predict what will print.
Compare that with your partner.

Then run it, and see if you were right.

Monday, September 10, 12

.equals

Duke Computer Science

Snarf Strings

Before you run it, predict what will print.
Compare that with your partner.

Then run it, and see if you were right.

I got:

!=
.equals
c == b
c.equals(b)

Monday, September 10, 12

String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
 System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
 System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
 System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
 System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	 }

ba

“Hello” “Hello”

== compares pointers.

Monday, September 10, 12

String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
 System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
 System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
 System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
 System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	

ba

“Hello” “Hello”

== compares pointers.

.equals compares values

Monday, September 10, 12

String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
 System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
 System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
 System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
 System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	

ba

“Hello” “Hello”

c

= copies pointers.

Monday, September 10, 12

String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
 System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
 System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
 System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
 System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}

ba

“Hello” “Hello”

c

= copies pointers.

.clone copies values.

Monday, September 10, 12

Jotto!

Yay Points!

Hangman due at midnight.

New assignment coming out today: Jotto!
(Due Monday)

Three new APTs coming out today!
(Due Friday)

Demo time!

http://goo.gl/9tx4P

Monday, September 10, 12

http://goo.gl/9tx4P
http://goo.gl/9tx4P

