
Objects Recap

Duke Computer Science

Pointers!

and

AKA: Why is .equals different than ==?

Find a partner for the day!

Monday, September 10, 12



Syntax

And Sales Tax, and Income Tax

public class Robot {

}
Instance variables and methods go inside the curly 

braces (so that they “belong to” the class)
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Syntax

And robotax. Sort of.

public class Robot {

}
Instance variables and methods go inside the curly 

braces (so that they “belong to” the class)

By yourself:
• Add the code that defines three instance variables: one int,   
one String, and one of whatever type you’d like. Name them 
whatever you want. 

With a partner: 
• Compare your results. Do you agree on the syntax?
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Syntax

And robotax. Sort of.

Private things can only be used inside the class:
that is, between the curly braces

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;

}

private             TYPE          NAME;
(In general. Note that there’s no value yet!)

To let code outside Robot use 
these data, we need getter methods.
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Syntax

And robotax. Sort of.

Private things can only be used inside the class:
that is, between the curly braces

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;

} To let code outside Robot use 
these data, we need getter methods.

By yourself: add a getter for one of your instance 
variables. Then compare with your partner.

private             TYPE          NAME;
(In general. Note that there’s no value yet!)
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Syntax

Maybe “robotix”?

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public String getName() {
	 	 return name;
	 }
}

Note “public”

public           return type  name(parameters)

By convention, getters are named 
getWhatever().

Because getSpeed() is 
inside Robot, it can use 

the (private) speed 
instance variable
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Syntax

Maybe “robotix”?

public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public String getName() {
	 	 return name;
	 }
}

Note “public”

public           return type  name(parameters)

By convention, getters are named 
getWhatever().

By yourself: add a setter for one of your instance 
variables. Then compare with your partner.

Because getSpeed() is 
inside Robot, it can use 

the (private) speed 
instance variable
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Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public void setSpeed(double newSpeed) {
	 	 speed = newSpeed;
	 }
}

public           return type          name(argtype1 argname1, argtype2 argname2, ...)

void means “doesn’t return 
anything”

Setters change the internal state of an object.
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Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public double getSpeed() {
	 	 return speed;
	 }
	
	 public void setSpeed(double newSpeed) {
	 	 speed = newSpeed;
	 }
}

public           return type          name(argtype1 argname1, argtype2 argname2, ...)

void means “doesn’t return 
anything”

Setters change the internal state of an object.

By yourself: write a constructor for your class. Then 
compare with your partner.
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Syntax
public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w, String n, double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
}

public          ClassName(parameters)

Constructors fill in instance variables.
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public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w, 
               String n, 
               double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
	
	 double getSpeed() {
	 	 return speed;
	 }
	
	 void setSpeed(double s) {
	 	 speed = s;
	 }
}

          pr2.setSpeed(10.0);
	 	

     System.out.println(
             "pr2 goes " + 
             pr2.getSpeed());

	

 Robot pr2 = new Robot(8, 
                       "PR2", 
                        0.5);
	 	

	 	

In the usual way: match lefts to rights.
And then: put the rights into an order that will run. And figure out what it prints.
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public class Robot {
	 private int numberOfWheels;
	 private String name;
	 private double speed;
	
	 public Robot(int w, 
               String n, 
               double s) {
	 	 numberOfWheels = w;
	 	 name = n;
	 	 speed = s;
	 }
	
	 double getSpeed() {
	 	 return speed;
	 }
	
	 void setSpeed(double s) {
	 	 speed = s;
	 }
}

          pr2.setSpeed(10.0);
	 	

     System.out.println(
             "pr2 goes " + 
             pr2.getSpeed());

	

 Robot pr2 = new Robot(8, 
                       "PR2", 
                        0.5);
	 	

	 	

In the usual way: match lefts to rights.
And then: put the rights into an order that will run. And figure out what it prints.
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Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science
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Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science

x

5

Primitives take up very 
little memory (each)

8
“PR2”

0.5
11

“foo”
...

Objects (potentially) take 
up lots of memory (each).
(So do arrays!)
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Pointers!
	 	 int x = 5;
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Duke Computer Science

x

5

Primitives take up very 
little memory (each)

8
“PR2”

0.5
11

“foo”
...

Objects (potentially) take 
up lots of memory (each).

pr2

A pointer. (also memory-cheap)

Every object variable is 
storing a pointer.
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Pointers!
	 	 int x = 5;
    int y = x;
    int z = x;

Duke Computer Science

x
5

y
5

z
5

y = 8;

x
?

y
?

z
?

In the usual way: fill the boxes in. Yes, it’s really easy.
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Pointers!
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Robot a = pr2;
Robot b = pr2;

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: finish the picture.
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Pointers!
	 	 Robot pr2 = new Robot(8, "PR2", 0.5);

Robot a = pr2;
Robot b = pr2;

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: finish the picture.

a

b

Objects (potentially) take 
up lots of memory (each).

So you want to be able to 
not copy them if you 
don’t have to!
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Pointers!
System.out.println("PR2 speed: " + pr2.getSpeed());

Duke Computer Science

8
“PR2”

0.5
11

“foo”
...

pr2

In the usual way: what prints?

a

b

a.setSpeed(10);
System.out.println("PR2 speed: " + pr2.getSpeed());
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.equals

Duke Computer Science

Snarf Strings

Before you run it, predict what will print. 
Compare that with your partner.

Then run it, and see if you were right.
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.equals

Duke Computer Science

Snarf Strings

Before you run it, predict what will print. 
Compare that with your partner.

Then run it, and see if you were right.

I got:

!=
.equals
c == b
c.equals(b)
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String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
  System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
  System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
  System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
  System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	 }

ba

“Hello” “Hello”

== compares pointers.
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String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
  System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
  System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
  System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
  System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	

ba

“Hello” “Hello”

== compares pointers.

.equals compares values
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String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
  System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
  System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
  System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
  System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}
	

ba

“Hello” “Hello”

c

= copies pointers.
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String a = new String("Hello");
String b = new String("Hello");
	 	
if (a == b) {
  System.out.println("==");
} else {
	 System.out.println("!=");
}
	 	
if (a.equals(b)) {
  System.out.println(".equals");
} else {
	 System.out.println("not .equals");
}
	 	
String c = b;
	 	
if (c == b) {
  System.out.println("c == b");
} else {
	 System.out.println("c != b");
}
	 	
if (c.equals(b)) {
  System.out.println("c.equals(b)");
} else {
	 System.out.println("not c.equals(b)");
}

ba

“Hello” “Hello”

c

= copies pointers.

.clone copies values.
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Jotto!

Yay Points!

Hangman due at midnight.

New assignment coming out today: Jotto!
(Due Monday)

Three new APTs coming out today!
(Due Friday)

Demo time!

http://goo.gl/9tx4P
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