Computer Science

 Empirical Analysis!

You need a partner, and at least half a

These slides are posted. laptop.

Maps redux

Maps can:

- Make an empty one (constructor)
- Add a key-value pair (.put)
- Check if a key is in the map
(.containsKey)
- Get the value for a key (.get)
- Tell you its size (.size)

One way to do a map

ArrayList of Pairs
\(\mathrm{m}=\begin{array}{r}Key

Value\end{array}\)| AK |
| :---: | :---: | :---: |
| 49 | \(\begin{gathered}\mathrm{NC}

12\end{gathered}\)| CA |
| :---: |
| 31 |

System.out.println(m.get("CA"));

One way to do a map

ArrayList of Pairs

$$
\mathrm{m}=\begin{array}{r}
\text { Key } \\
\begin{array}{c}
\text { Value }
\end{array} \begin{array}{|c|c|c|}
\hline \mathrm{AK} \\
49
\end{array} \\
\hline
\end{array} \begin{gathered}
\mathrm{NC} \\
12
\end{gathered} \begin{gathered}
\mathrm{CA} \\
31
\end{gathered}
$$

m.put("NM", 47);

One way to do a map
 ArrayList of Pairs

$$
\left.\mathrm{m}=\begin{array}{r}
\text { Key } \\
\text { Value }
\end{array} \begin{array}{|c|c|c|c|}
\hline \text { AK } \\
49
\end{array} \begin{array}{c}
\text { NC } \\
12
\end{array} \begin{array}{c}
\text { CA } \\
31
\end{array}\right] \begin{gathered}
\text { NM } \\
47 \\
\hline
\end{gathered}
$$

m.put("NM", 47);

You can probably predict why I chose three of these four...

Snarf Sep I 2InClass

Read ArrayListMap.java
 (and Pair.java)

CountUniqueWords.java

CountUniqueWords.java

0. Time War \& Peace for

- 100 words
- 500 words
- 2500 words
- 12,500 words
- 62,500 words
- 312,500 words
- 565,460 words (the total) This one in particular is very slow.
I. Plot the timings using your favorite tool.

2. Enter them in
http://www.cs.duke.edu/courses/fall I2/compsci201/charts/sep I2.html (War \& Peace) (leave this browser window open for later)

My timings

Two minutes!
120000

Word Count
Ask: Why?

So, what's going on?

Map Value

Key
Value

Comparisons: 0
Operations: 0

Code to run next
m.put ("NY", 11);

So, what's going on?

Map Value

Comparisons: 0
Operations: I

Code to run next
m.put ("NC", 12);

So, what's going on?

Map Value

Comparisons: I
Operations: 2

Code to run next
m.put ("AK", 49);

So, what's going on?

Map Value

Comparisons: 3
Operations: 3

Code to run next
m.put ("CA", 31);

So, what's going on?

Map Value

Comparisons: 6
Operations: 4

Code to run next
m.put ("NM", 47);

So, what's going on?

Map Value

Comparisons: I0
Operations: 5

Code to run next
m.put ("WA", 42);

So, what's going on?

Map Value

Comparisons: I5
Operations: 6

Code to run next
m.put ("DC", 51);

So, what's going on?

Map Value

Comparisons: 21
21
Operations: 7

$1+2+3+\ldots+N$

123
 $98 \quad 99100$

$$
1+2+3+\ldots+N
$$

123
$98 \quad 99$
100

N insertions run in time quadratic in N
AKA "Quadratic time"

Was this fair?

Different Case

Map Value

> Key
> Value

Comparisons: 0
Operations: 0

Code to run next
m.put ("NY", 11);

Different Case

Map Value

Comparisons: 0
Operations: I

Code to run next
m.put ("NY", 12);

Different Case

Map Value

Comparisons: I
Operations: 2

Code to run next
m.put ("NY", 13);

Different Case

Map Value

Comparisons: 2
Operations: 3

Code to run next
m.put ("NY", 14);

Different Case

Map Value

Comparisons: 3
Operations: 4

War \& Peace

To Do: complete the graph

0.Time cheese.txt and random.txt for

- 100 words
- 500 words
- 2500 words
- 12,500 words
random is suffering by now; best to not try the bigger ones...
- 62,500 words
- 312,500 words
- 565,460 words
I. Plot the timings using your favorite tool.

2. Enter them in
http://www.cs.duke.edu/courses/fallI2/compsci20I/charts/sepl2.html
